Skip to main content

Current and Emerging Technologies in Hematologic Testing

  • Chapter
  • First Online:
Hematologic Challenges in the Critically Ill

Abstract

Hematologic testing informs management decisions made by clinicians managing critically ill patients. The technology underpinning such tests continuously evolves, so interpretation of results hinges on understanding the methodologies used and comparison to established standards. Hemoglobin concentration determination can be performed with point-of-care and noninvasive methods. These have varying agreement with laboratory-based methods. Patients treated with direct oral anticoagulants present a challenge as the action of these are not well differentiated using standard laboratory methods. Viscoelastic testing and some emerging tests may provide guidance for treating critically ill patients receiving direct oral anticoagulants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hovaguimian F, Myles PS. Restrictive versus liberal transfusion strategy in the perioperative and acute care settings: a context-specific systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2016;125(1):46–61. https://doi.org/10.1097/ALN.0000000000001162.

    Article  PubMed  Google Scholar 

  2. Zwart A, van Assendelft OW, Bull BS, England JM, Lewis SM, Zijlstra WG. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobinocyanide standard (4th edition). J Clin Pathol. 1996;49(4):271–4. http://www.ncbi.nlm.nih.gov/pubmed/8655699. Accessed January 17, 2018

    Article  CAS  Google Scholar 

  3. Ali AA, Ali GS, Steinke JM, Shepherd AP. Co-oximetry interference by hemoglobin-based blood substitutes. Anesth Analg. 2001;92(4):863–9. https://doi.org/10.1097/00000539-200104000-00012.

    Article  CAS  PubMed  Google Scholar 

  4. Chaudhary R, Dubey A, Sonker A. Techniques used for the screening of hemoglobin levels in blood donors: current insights and future directions. J Blood Med. 2017;8:75–88. https://doi.org/10.2147/JBM.S103788.

    Article  PubMed  PubMed Central  Google Scholar 

  5. The CFOR, The CFOR, Patient CILL, Patient CILL. Anemia and blood transfusion in critically ill patients. Assessment. 2002;288(12):1499–507.

    Google Scholar 

  6. Siemens Healthineers: epoc Blood analysis system : epoc blood analysis system : summary of analytical methods and performance. 2017. Online at: https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-contextroot/wcm/idc/groups/public/@us/documents/download/mda3/mzm4/~edisp/40_17_10261_01_76_epoc_white_pa per-04359677.pdf.

  7. Bosshart M, Stover JF, Stocker R, et al. Two different hematocrit detection methods: different methods, different results? BMC Res Notes. 2010;3(1):65. https://doi.org/10.1186/1756-0500-3-65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tynngård N, Lindahl TL, Ramström S. Assays of different aspects of haemostasis - what do they measure? Thromb J. 2015;13(1):1–10. https://doi.org/10.1186/s12959-015-0036-2.

    Article  CAS  Google Scholar 

  9. MacKnet MR, Allard M, Applegate RL, Rook J. The accuracy of noninvasive and continuous total hemoglobin measurement by pulse CO-oximetry in human subjects undergoing hemodilution. Anesth Analg. 2010;111(6):1424–6. https://doi.org/10.1213/ANE.0b013e3181fc74b9.

    Article  PubMed  Google Scholar 

  10. Gayat E, Bodin A, Sportiello C, et al. Performance evaluation of a noninvasive hemoglobin monitoring device. Ann Emerg Med. 2011;57(4):330–3. https://doi.org/10.1016/j.annemergmed.2010.11.032.

    Article  PubMed  Google Scholar 

  11. Berkow L, Rotolo S, Mirski E. Continuous noninvasive hemoglobin monitoring during complex spine surgery. Anesth Analg. 2011;113(6):1396–402. https://doi.org/10.1213/ANE.0b013e318230b425.

    Article  CAS  PubMed  Google Scholar 

  12. Applegate RL, Barr SJ, Collier CE, Rook JL, Mangus DB, Allard MW. Evaluation of pulse cooximetry in patients undergoing abdominal or pelvic surgery. Anesthesiology. 2012;116(1):65–72. https://doi.org/10.1097/ALN.0b013e31823d774f.

    Article  PubMed  Google Scholar 

  13. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327:307–10. https://doi.org/10.1016/S0140-6736(86)90837-8.

    Article  Google Scholar 

  14. Huang PH, Shih BF, Tsai Y-F, et al. Accuracy and trending of continuous noninvasive hemoglobin monitoring in patients undergoing liver transplantation. Transplant Proc. 2016;48:1067–70. https://doi.org/10.1016/j.transproceed.2015.12.121.

    Article  CAS  PubMed  Google Scholar 

  15. Frasca D, Dahyot-Fizelier C, Catherine K, Levrat Q, Debaene B, Mimoz O. Accuracy of a continuous noninvasive hemoglobin monitor in intensive care unit patients. Crit Care Med. 2011;39(10):2277–82. https://doi.org/10.1097/CCM.0b013e3182227e2d.

    Article  PubMed  Google Scholar 

  16. Joseph B, Pandit V, Aziz H, et al. Transforming hemoglobin measurement in trauma patients: noninvasive spot check hemoglobin. J Am Coll Surg. 2015;220(1):93–8. https://doi.org/10.1016/j.jamcollsurg.2014.09.022.

    Article  PubMed  Google Scholar 

  17. Awada WN, Mohmoued MF, Radwan TM, Hussien GZ, Elkady HW. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015;29(6):733–40. https://doi.org/10.1007/s10877-015-9660-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Riess ML, Pagel PS. Noninvasively measured hemoglobin concentration reflects arterial hemoglobin concentration before but not after cardiopulmonary bypass in patients undergoing coronary artery or valve surgery. J Cardiothorac Vasc Anesth. 2016;30(5):1167–71. https://doi.org/10.1053/j.jvca.2016.03.148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welker E, Novak J, Jelsma L, et al. Continuous hemoglobin monitoring in pediatric trauma patients with solid organ injury. J Pediatr Surg. 2017; https://doi.org/10.1016/j.jpedsurg.2017.12.015.

    Article  Google Scholar 

  20. Garcia-Soler P, Camacho Alonso JM, Gonzalez-Gomez JM, Milano-Manso G. Noninvasive hemoglobin monitoring in critically ill pediatric patients at risk of bleeding. Med Intensiva. 2017;41(4):209–15. https://doi.org/10.1016/j.medin.2016.06.011.

    Article  CAS  PubMed  Google Scholar 

  21. Gamal M, Abdelhamid B, Zakaria D, et al. Evaluation of non-invasive hemoglobin monitoring in trauma patients with low hemoglobin levels. Shock. 2018;49(2):150–3. https://doi.org/10.1097/SHK.0000000000000949.

    Article  CAS  PubMed  Google Scholar 

  22. Kim SH, Lilot M, Murphy LSL, et al. Accuracy of continuous noninvasive hemoglobin monitoring: a systematic review and meta-analysis. Anesth Analg. 2014;119(2):332–46. https://doi.org/10.1213/ANE.0000000000000272.

    Article  CAS  PubMed  Google Scholar 

  23. Applegate RL, Dorotta IL, Wells B, Juma D, Applegate PM. The relationship between oxygen reserve index and arterial partial pressure of oxygen during surgery. Anesth Analg. 2016;123(3):626–33. https://doi.org/10.1213/ANE.0000000000001262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Szmuk P, Steiner JW, Olomu PN, Ploski RP, Sessler DI, Ezri T. Oxygen reserve index: a novel noninvasive measure of oxygen reserve – a pilot study. Anesthesiology. 2016;124(4):779–84. https://doi.org/10.1097/ALN.0000000000001009.

    Article  CAS  Google Scholar 

  25. Scheeren TWL, Belda FJ, Perel A. The oxygen reserve index (ORI): a new tool to monitor oxygen therapy. J Clin Monit Comput. 2018;32(3):379–89.

    Article  CAS  Google Scholar 

  26. Eby C. Novel anticoagulants and laboratory testing. Int J Lab Hematol. 2013;35(3):262–8. https://doi.org/10.1111/ijlh.12065.

    Article  CAS  PubMed  Google Scholar 

  27. Portola pharmaceuticals I. Bevyxxa prescribing information. 2017. Online at: https://www.bevyxxa.com/wp-content/uploads/2017/11/BEVYXXA-PI-v.1.4.june2017-text.pdf; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208383s000lbl.pdf.

  28. Samuelson BT, Cuker A. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 2017;31(1):77–84. https://doi.org/10.1016/j.blre.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  29. Cuker A, Siegal DM, Crowther MA, Garcia DA. Laboratory measurement of the anticoagulant activity of the non-vitamin K oral anticoagulants. J Am Coll Cardiol. 2014;64(11):1128–39. https://doi.org/10.1016/j.jacc.2014.05.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hawes EM, Deal AM, Funk-Adcock D, et al. Performance of coagulation tests in patients on therapeutic doses of dabigatran: a cross-sectional pharmacodynamic study based on peak and trough plasma levels. J Thromb Haemost. 2013;11(8):1493–502. https://doi.org/10.1111/jth.12308.

    Article  CAS  PubMed  Google Scholar 

  31. Cate H, Henskens YMC, Lancé MD. Practical guidance on the use of laboratory testing in the management of bleeding in patients receiving direct oral anticoagulants. Vasc Health Risk Manag. 2017;13:457–67. https://doi.org/10.2147/VHRM.S126265.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Skeppholm M, Al-Aieshy F, Berndtsson M, et al. Clinical evaluation of laboratory methods to monitor apixaban treatment in patients with atrial fibrillation. Thromb Res. 2015;136(1):148–53. https://doi.org/10.1016/j.thromres.2015.04.030.

    Article  CAS  PubMed  Google Scholar 

  33. Van Ryn J, Stangier J, Haertter S, et al. Dabigatran etexilate - a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost. 2010;103(6):1116–27. https://doi.org/10.1160/TH09-11-0758.

    Article  PubMed  Google Scholar 

  34. Hellstern P, Bach J, Simon M, Saggau W. Heparin monitoring during cardiopulmonary bypass surgery using the one-step point-of-care whole blood anti-factor-Xa clotting assay heptest-POC-Hi. J Extra Corpor Technol. 2007;39(2):81–6. http://www.scopus.com/inward/record.url?eid=2-s2.0-35248828591&partnerID=40&md5=49638d5eb0b3fdfc3c4cc9c8affb9584

    PubMed  PubMed Central  Google Scholar 

  35. Love JE, Ferrell C, Chandler WL. Monitoring direct thrombin inhibitors with a plasma diluted thrombin time. Thromb Haemost. 2007;98(1):234–43. https://doi.org/10.1160/TH06-10-0607.

    Article  CAS  PubMed  Google Scholar 

  36. Moore GW. Recent guidelines and recommendations for laboratory detection of lupus anticoagulants. Semin Thromb Hemost. 2014;40(2):163–71. https://doi.org/10.1055/s-0033-1364185.

    Article  CAS  PubMed  Google Scholar 

  37. Pötzsch B, Hund S, Madlener K, Unkrig C, Müller-Berghaus G. Monitoring of recombinant hirudin: assessment of a plasma-based ecarin clotting time assay. Thromb Res. 1997;86(5):373–83. https://doi.org/10.1016/S0049-3848(97)00082-0.

    Article  PubMed  Google Scholar 

  38. Gosselin RC, Dwyre DM, Dager WE. Measuring dabigatran concentrations using a chromogenic ecarin clotting time assay. Ann Pharmacother. 2013;47(12):1635–40. https://doi.org/10.1177/1060028013509074.

    Article  CAS  PubMed  Google Scholar 

  39. Douxfils J, Tamigniau A, Chatelain B, et al. Comparison of calibrated chromogenic anti-Xa assay and PT tests with LC-MS/MS for the therapeutic monitoring of patients treated with rivaroxaban. Thromb Haemost. 2013;110(4):723–31. https://doi.org/10.1160/TH13-04-0274.

    Article  CAS  PubMed  Google Scholar 

  40. Becker RC, Yang H, Barrett Y, et al. Chromogenic laboratory assays to measure the factor Xa-inhibiting properties of apixaban-an oral, direct and selective factor Xa inhibitor. J Thromb Thrombolysis. 2011;32(2):183–7. https://doi.org/10.1007/s11239-011-0591-8.

    Article  PubMed  Google Scholar 

  41. Mani H, Rohde G, Stratmann G, et al. Accurate determination of rivaroxaban levels requires different calibrator sets but not addition of antithrombin. Thromb Haemost. 2012;108(1):191–8. https://doi.org/10.1160/TH11-12-0832.

    Article  CAS  PubMed  Google Scholar 

  42. Wolzt M, Samama MM, Kapiotis S, Ogata K, Mendell J, Kunitada S. Effect of edoxaban on markers of coagulation in venous and shed blood compared with fondaparinux. Thromb Haemost. 2011;105(6):1080–90. https://doi.org/10.1160/TH10-11-0705.

    Article  CAS  PubMed  Google Scholar 

  43. Bliden KP, Chaudhary R, Mohammed N, et al. Determination of non-vitamin K oral anticoagulant (NOAC) effects using a new-generation thromboelastography TEG 6s system. J Thromb Thrombolysis. 2017;43(4):437–45. https://doi.org/10.1007/s11239-017-1477-1.

    Article  CAS  PubMed  Google Scholar 

  44. Anderson L, Quasim I, Steven M, et al. Interoperator and intraoperator variability of whole blood coagulation assays: a comparison of thromboelastography and rotational thromboelastometry. J Cardiothorac Vasc Anesth. 2014;28(6):1550–7. https://doi.org/10.1053/j.jvca.2014.05.023.

    Article  PubMed  Google Scholar 

  45. Dias JD, Norem K, Doorneweerd DD, Thurer RL, Popovsky MA, Omert LA. Use of thromboelastography (TEG) for detection of new oral anticoagulants. Arch Pathol Lab Med. 2015;139(5):665–73. https://doi.org/10.5858/arpa.2014-0170-OA.

    Article  CAS  PubMed  Google Scholar 

  46. Casutt M, Konrad C, Schuepfer G. Effect of rivaroxaban on blood coagulation using the viscoelastic coagulation test ROTEM. Anaesthesist. 2012;61(11):948–53. https://doi.org/10.1007/s00101-012-2091-4.

    Article  CAS  PubMed  Google Scholar 

  47. Seyve L, Richarme C, Polack B, Marlu R. Impact of four direct oral anticoagulants on rotational thromboelastometry (ROTEM). Int J Lab Hematol. 2017;40:84–93. https://doi.org/10.1111/ijlh.12744.

    Article  PubMed  Google Scholar 

  48. Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem. 2016;62(5):699–707. https://doi.org/10.1373/clinchem.2015.248625.

    Article  CAS  PubMed  Google Scholar 

  49. Du S, Weiss C, Christina G, et al. Determination of dabigatran in plasma, serum, and urine samples: comparison of six methods. Clin Chem Lab Med. 2015;53(8):1237–47. https://doi.org/10.1515/cclm-2014-0991.

    Article  CAS  PubMed  Google Scholar 

  50. Douxfils J, Chatelain B, Hjemdahl P, et al. Does the Russell viper venom time test provide a rapid estimation of the intensity of oral anticoagulation? A cohort study. Thromb Res. 2015;135(5):852–60. https://doi.org/10.1016/j.thromres.2015.02.020.

    Article  CAS  PubMed  Google Scholar 

  51. Brunetti L, Sanchez-Catanese B, Kagan L, et al. Evaluation of the chromogenic anti-factor IIa assay to assess dabigatran exposure in geriatric patients with atrial fibrillation in an outpatient setting. Thromb J. 2016;14(1):1–8. https://doi.org/10.1186/s12959-016-0084-2.

    Article  CAS  Google Scholar 

  52. Tshikudi DM, Tripathi MM, Hajjarian Z, Van Cott EM, Nadkarni SK. Optical sensing of anticoagulation status: towards point-of-care coagulation testing. PLoS One. 2017;12(8):1–19. https://doi.org/10.1371/journal.pone.0182491.

    Article  CAS  Google Scholar 

  53. Krebs CR, Li L, Wolberg AS, Oldenburg AL. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy. Rev Sci Instrum. 2015;86(7):1–11. https://doi.org/10.1063/1.4926543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Applegate II MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Littlejohn, J.E., Applegate, R.L. (2018). Current and Emerging Technologies in Hematologic Testing. In: Shander, A., Corwin, H. (eds) Hematologic Challenges in the Critically Ill. Springer, Cham. https://doi.org/10.1007/978-3-319-93572-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93572-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93571-3

  • Online ISBN: 978-3-319-93572-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics