Skip to main content

Evolution, Diversity, and Development of the Craniocervical System in Turtles with Special Reference to Jaw Musculature

  • Chapter
  • First Online:
Heads, Jaws, and Muscles

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Turtles are one of the most enigmatic groups of vertebrates with their highly modified “body plan” and, as such, attracted the attention of researchers for a long time. Aside from the unusual turtle shell, the skull in this group shows great changes in comparison to that of other amniote groups. Because the skull has been considered one of most important body regions when analyzing the phylogenetic relationships of amniotes, the distinct turtle skull morphology is one of the key features in defining their position among reptiles. Here, we review the current knowledge of the turtle head, summarizing the general morphology of the skull and neck as well as the different anatomical modifications characteristic of the main lineages of extant and extinct turtles. We explore the main questions that have been raised while studying those issues, for instance, the origin and diversity of the temporal emarginations (dermal bone reductions), the different neck retraction mechanisms and their influence on the shape of the skull, and the anatomy and development of the jaw adductor musculature and its relation to some characteristic features of the turtle skull, such as akinesis and the divergent trochlear mechanisms in cryptodires and pleurodires. Based on 3D reconstructions, we propose a hypothetical model for ancestral states and gross morphology of the jaw adductor musculature in Proganochelys quenstedti (the earliest turtle with a complete shell), an important step toward the understanding of the evolution of those muscles in turtles. Finally, we suggest that more integrative approaches that consider anatomical, developmental, and paleontological data and that employ modern techniques in morphological and functional anatomic analyses (such as μCT scanning and finite element analysis) have a greater potential to answer the still numerous open questions about the evolution of the turtle head.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson NJ (2009) Biomechanics of feeding and neck motion in the Softshell turtle, Apalone spinifera, Rafinesque [doctor of arts thesis in the Department of Biology, Idaho state university]. ProQuest, Ann Arbor

    Google Scholar 

  • Anquetin J, Tong H, Claude J (2017) A Jurassic stem pleurodire sheds light on the functional origin of neck retraction in turtles. Sci Rep 7:42376. https://doi.org/10.1038/srep42376 http://www.nature.com/articles/srep42376#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo R, Polcyn MJ (2013) A biomechanical analysis of the skull and adductor chamber muscles in the Late Cretaceous plesiosaur Libonectes. Palaeontologica Electronica 16(2:10A):25

    Google Scholar 

  • Baur G (1889) On the morphology of the vertebrate skull. J Morphol 3:471–474

    Google Scholar 

  • de Beer GR (1937) The development of the vertebrate skull. The University of Chicago Press, Chicago

    Google Scholar 

  • Bels VL, Davenport J, Delheusy V (1997) Kinematic analysis of the feeding behavior in the box turtle Terrapene carolina (L.), (Reptilia: Emydidae). J Exp Zool 277:198–212

    Article  Google Scholar 

  • Bels V, Baussart S, Davenport J, Shorten M, O’Riordan RM, Renous S, Davenport JL (2008) Functional evolution of feeding behavior in turtles. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC Press, Boca Raton, pp 187–212

    Google Scholar 

  • Bever GS, Lyson TR, Field DJ, Bhullar B-AS (2015) Evolutionary origin of the turtle skull. Nature 525:239–242

    Google Scholar 

  • Bever GS, Lyson TR, Field DJ, Bhullar B-AS (2016) The amniote temporal roof and the diapsid origin of the turtle skull. Zoology 119:471–473. https://doi.org/10.1016/j.zool.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  • Bojanus LH (1819) Anatome testudinis europaeae. Isis 11:1766–1769 1762 plates

    Google Scholar 

  • Boulenger GA (1918) Sur la place des cheloniens dans la classification, vol 167. Comptes Tendues A l’Academie Des Sciences, Paris, pp 614–618

    Google Scholar 

  • deBraga M, Rieppel O (1997) Reptile phylogeny and the interrelationships of turtles. Zool J Linnean Soc 120:281–354

    Article  Google Scholar 

  • Bramble DM (1974) Occurrence and significance of the os transiliens in gopher tortoises. Copeia:102–109

    Google Scholar 

  • Broom R (1924) On the classification of the reptiles. Bull Am Mus Nat Hist 51:39–65

    Google Scholar 

  • Burke AC (1989) Development of the turtle carapace: implications for the evolution of a novel Bauplan. J Morphol 199:363–378

    Article  PubMed  Google Scholar 

  • Cebra-Thomas J, Tan F, Sistla S, Estes E, Bender G, Kim C, Riccio P, Gilbert SF (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool B Mol Dev Evol 304B:558–569

    Article  CAS  Google Scholar 

  • Clark K, Bender G, Murray BP, Panfilio K, Cook S, Davis R, Murnen K, Tuan RS, Gilbert SF (2001) Evidence for the neural crest origin of turtle plastron bones. Genesis 31:111–117

    Article  CAS  PubMed  Google Scholar 

  • Claude J, Pritchard P, Tong H, Paradis E, Auffray JC (2004) Ecological correlates and evolutionary divergence in the skull of turtles: a geometric morphometric assessment. Syst Biol 53:933–948

    Article  PubMed  Google Scholar 

  • Cope E (1896) The ancestry of the Testudinata. Am Nat 30:398–400

    Google Scholar 

  • Cordero GA, Quinteros K (2015) Skeletal remodelling suggests the turtle’s shell is not an evolutionary straitjacket. Biol Lett 11:20150022. https://doi.org/10.1098/rsbl.2015.0022

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford NG, Parham JF, Sellas AB, Faircloth BC, Glenn TC, Papenfuss TJ, Henderson JB, Hanson MH, Simison WB (2015) A phylogenomic analysis of turtles. Mol Phylogenet Evol 83:250–257

    Article  PubMed  Google Scholar 

  • Dalrymple GH (1975) Variation in the cranial feeding mechanism of turtles of the genus Trionyx Geoffroy. PhD thesis, University of Toronto, Toronto

    Google Scholar 

  • Dalrymple GH (1977) Intraspecific variation in the cranial feeding mechanism of turtles of the genus Trionyx (Reptilia, Testudines, Trionychidae). J Herpetol 11:255–285

    Article  Google Scholar 

  • Daza JD, Diogo R, Johnston P, Abdala V (2011) Jaw adductor muscles across lepidosaurs: a reappraisal. Anat Rec 294:1765–1782. https://doi.org/10.1002/ar.21467

    Article  Google Scholar 

  • Diogo R, Abdala V (2010) Muscles of vertebrates. CRC Press/Science Publishers, Boca Bacon, New York; Oxon/Enfield

    Google Scholar 

  • Diogo R, Abdala V, Lonergan N, Wood BA (2008) From fish to modern humans–comparative anatomy, homologies and evolution of the head and neck musculature. J Anat 213:391–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge University Press, London

    Google Scholar 

  • Eger SC (2006) Morphologische und phylogenetische Untersuchungen an der Nickhautmuskulatur bei Sauropsiden (unter besonderer Berücksichtigung der Chelonia). Universität Tübingen, Tübingen

    Google Scholar 

  • Ernst CH, Barbour RW (1992) Turtles of the world. Smithsonian Institution Scholarly Press, Washington, DC

    Google Scholar 

  • Eßwein SE (1992) Zur phylogenetischen und ontogenetischen Entwicklung des akinetischen Craniums der Schildkröten. Natürliche Konstruktionen-Mitteilungen des SFB 230 7 (Proceedings of the II. International Symposium of the Sonderforschungsbereich 230, Stuttgart, 1.-4.10.1991):51–55

    Google Scholar 

  • Ferreira GS (2016) Abordagens convergentes, novidades evolutivas e a origem da carapaça das tartarugas. Revista da Biologia 16:6

    Article  Google Scholar 

  • Ferreira GS, Lautenschlager S, Langer MC, Evers SW, Rabi M, Werneburg I (2018) Biomechanical analyses suggest relation between neck-retraction and the trochlear mechanism in extant turtles. In: Turtle evolution symposium. Scidinge Hall, Tübingen, pp 38–40

    Google Scholar 

  • Foffa D, Cuff AR, Sassoon J, Rayfield EJ, Mavrogordato MN, Benton MJ (2014) Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK. J Anat 225:209–219. https://doi.org/10.1111/joa.12200

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazzetta TH (1968) Adaptive problems and possibilities in the temporal fenestration of tetrapod skulls. J Morphol 125:145–157

    Article  CAS  PubMed  Google Scholar 

  • Frolich LM (1997) The role of the skin in the origin of amniotes: permeability barrier, protective covering and mechanical support. In: Sumida SS, Martin KLM (eds) Amniote origins. Completing the transition to land. Academic Press, San Diego

    Google Scholar 

  • Fuchs H (1915) Über den Bau und die Entwicklung des Schädels der Chelone imbricata. Ein Beitrag zur Entwicklungsgeschichte und vergleichenden Anatomie des Wirbeltierschädels. Erster Teil: Das Primordialskelett des Neurocraniums und des Kieferbogens. In: Voeltzkow A (ed) Reise in Ostafrika in den Jahren 1903–1905, Wissenschaftliche Ergebnisse, vol 5. Schweizerbart, Stuttgart, pp 1–325

    Google Scholar 

  • Fuchs H (1931) Von dem Ductus angularis oris der Arrauschildkröte (Podocnemis expansa). (Ein neues Organ?). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse:131–147

    Google Scholar 

  • Gaffney ES (1975) A phylogeny and classification of the higher categories of turtles. Bull Am Mus Nat Hist 155:387–436

    Google Scholar 

  • Gaffney ES (1977) The side-necked turtle family Chelidae: a theory of relationships using shared derived characters. Am Mus Novit 2620:1–28

    Google Scholar 

  • Gaffney ES (1979) Comparative cranial morphology of recent and fossil turtles. Bull Am Mus Nat Hist 164:67–376

    Google Scholar 

  • Gaffney ES (1980) Phylogenetic relationships of the major groups of amniotes. In: Panchen AL (ed) The terrestrial environment and the origin of land vertebrates, Systematic Association, vol 15. Academic Press, London

    Google Scholar 

  • Gaffney ES (1985) The cervical and caudal vertebrae of the cryptodiran turtle, Meiolania platyceps, from the Pleistocene of Lord Howe Island. Australia American Museum Novitates 2805:1–29

    Google Scholar 

  • Gaffney ES (1990) The comparative osteology of the Triassic turtle Proganochelys. Bull Am Mus Nat Hist 194:1–263

    Google Scholar 

  • Gaffney ES, Jenkins FA Jr (2010) The cranial morphology of Kayentachelys, an early Jurassic cryptodire, and the early history of turtles. Acta Zool 91:335–368

    Google Scholar 

  • Gaffney ES, Kitching JW (1994) The most ancient African turtle. Nature 369:55–58

    Article  Google Scholar 

  • Gaffney ES, Kitching JW (1995) The morphology and relationships of Australochelys, and early Jurassic turtle from South Africa. Am Musem Novitates 3130:29

    Google Scholar 

  • Gaffney ES, Meylan PA (1988) A phylogeny of turtles. In: Benton MJ (ed) The phylogeny and classification of the Tetrapods. Volume 1: Amphibians, reptiles, birds, vol 35A. Clarendon Press, Oxford, pp 157–219

    Google Scholar 

  • Gaffney ES, Hutchison JH, Jenkins AF, Meeker LJ (1987) Modern turtle origins: the oldest known cryptodire. Science 237:289–291

    Article  CAS  PubMed  Google Scholar 

  • Gaffney ES, Tong H, Meylan PA (2006) Evolution of the side-necked turtles: the families Bothremydidae, Euraxemydidae, and Araripemydidae. Bull Am Mus Nat Hist 300:700

    Article  Google Scholar 

  • Gardiner BG (1993) Haematothermia: warm-blooded amniotes. Cladistics 9:369–395

    Article  PubMed  Google Scholar 

  • Gasc JP (1981) Axial musculature. In: Gans C, Parsons TS, Parsons TS (eds) Biology of the Reptilia, (Morphology F). morphology D, vol 11. Academic Press, London, pp 355–435

    Google Scholar 

  • Gaupp E (1895) Zur vergleichenden Anatomie der Schläfengegend am knöchernen Wirbeltierschädel. Morphologische Arbeiten 4:77–131

    Google Scholar 

  • Gauthier J, Kluge AG, Rowe T (1988) Amniote phylogeny and the importance of fossils. Cladistics 4:105–209

    Article  PubMed  Google Scholar 

  • Gauthier JA, Kearney M, Anderson Maisano J, Rieppel O, Behlke ADB (2012) Assembling the Squamate Tree of Life: Perspectives from the Phenotype and the Fossil Record. Bulletin of the Peabody Museum of Natural History 53(1):3–308

    Article  Google Scholar 

  • George JC, Shah RV (1955) The myology of the head and the neck of the common Indian pond turtle, Lissemys punctata granosa Schoepff. J Anim Morphol Physiol 1:1–12

    Google Scholar 

  • Gilbert SF, Loredo GA, Brukman A, Burke AC (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Bender G, Betters E, Yin M, Cebra-Thomas JA (2007) The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integr Comp Biol 47:401–408. https://doi.org/10.1093/icb/icm020

    Article  PubMed  Google Scholar 

  • Gilbert SF, Cebra-Thomas JA, Burke AC (2008) How the turtle gets its shell. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC Press, Boca Raton, pp 1–16

    Google Scholar 

  • Goodrich ES (1916) On the classification of the Reptilia. Proc R Soc London Ser B, Containing Papers of a Biological Character 89:261–276

    Article  Google Scholar 

  • Goodrich ES (1930) Studies on the structure and development of vertebrates. Macmillan and Co, London

    Book  Google Scholar 

  • Gregory WK (1946) Pareiasaurs versus placodonts as near ancestors to the turtles. Bull Am Mus Nat Hist 86:277–326

    Google Scholar 

  • Gregory WK, Adams LA (1915) The temporal fossæ of vertebrates in relation to the jaw muscles. Science 41:763–765

    Article  CAS  PubMed  Google Scholar 

  • Guillon JM, Guéry L, Hulin V, Girondot M (2012) A large phylogeny of turtles (Testudines) using molecular data. Contrib Zool 81:147–158

    Google Scholar 

  • Hacker G (1954) Über Kiefermuskulatur und Mundfascien bei Testudo graeca. PhD thesis, Ernst-Moritz-Arndt-Universität, Greifswald

    Google Scholar 

  • Hay OP (1905) On the group of fossil turtles known as the Amphichelydia; with remarks on the origin and relationships of the suborders, superfamilies, and families of Testudines. Bull Am Mus Nat Hist 21:137–175

    Google Scholar 

  • Hedges SB (2012) Amniote phylogeny and the position of turtles. BMC Biol 10:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedges SB, Poling LL (1999) A molecular phylogeny of reptiles. Science 283:998–1001

    Article  CAS  PubMed  Google Scholar 

  • Heiss E, Plenk H, Weisgram J (2008) Microanatomy of the palatal mucosa of the semiaquatic Malayan box turtle, Cuora amboinensis, and functional implications. Anat Rec 291:10

    Article  Google Scholar 

  • Herrel A, O’Reilly JC, Richmond AM (2002) Evolution of bite performance in turtles. J Evol Biol 15:1083–1094

    Article  Google Scholar 

  • Herrel A, Van Damme J, Aerts P (2008) Cervical anatomy and function in turtles. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC Press, Boca Raton, pp 163–185

    Google Scholar 

  • Hoffmann CK (1890) Reptilien. 1. Schildkröten, 6(3). Dr. H.G. Bronn’s Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. C.F. Winter’sche Verlagshandlung, Leipzig

    Google Scholar 

  • Hofsten N (1941) On the phylogeny of the Reptilia. Zool Bidrag Fran Uppsala 20:501–521

    Google Scholar 

  • Holliday CM, Witmer LM (2007) Archosaur adductor chamber evolution: integration of musculoskeletal and topological criteria in jaw muscle homology. J Morphol 268:457–484. https://doi.org/10.1002/Jmor.10524

    Article  PubMed  Google Scholar 

  • Iordansky NN (1987) Morphological and functional features of mandibular apparatus in turtles (Reptilia, Chelonia) and the problem of their origin [in Russian] (English abstract), МОРФО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ЧЕЛЮСТНОГО АППАРАТА ЧЕРЕПАХ (REPТlLIA, CHELONIA) И ПРОБЛЕМА ИХ ПРОИСХОЖДЕНИЯ. Zoologichesky Zhurnal 66:1716–1729

    Google Scholar 

  • Iordansky NN (1994) Tendons of jaw muscles in Amphibia and Reptilia: homology and evolution. Russ J Herpetol 1:13–20

    Google Scholar 

  • Iordansky NN (1996) Jaw musculature of turtles: structure, functions, and evolutionary conservatism. Russ J Herpetol 3:49–57

    Google Scholar 

  • Iordansky NN (2010) Pterygoideus muscles and other jaw adductors in amphibians and reptiles Biol Bull 37:905–914. [English version of Russian original text]

    Google Scholar 

  • Jannel A (2015) Neck mobility, grazing habits, and intraspecific combat behaviour in the Giant Pleistocene horned turtle Meiolania platyceps. Uppsala Universitet

    Google Scholar 

  • Jones MEH, Curtis N, O’Higgins P, Fagan M, Evans SE (2009) The head and neck muscles accociated with feeding on Sphenodon (Reptilia: Lepidosauria: Rynchocephalia). Palaeontologia Electronica 12(7A):56 http://palaeo-electronica.org/2009_2002/2179/index.html

    Google Scholar 

  • Jones MEH, Werneburg I, Curtis N, Penrose R, O’Higgins P, Fagan MJ, Evans SE (2012) The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea) and skull shape in Testudines. PLoS One 7:e47852. https://doi.org/10.1371/journal.pone.0047852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce WG (2007) Phylogenetic relationships of Mesozoic turtles. Bull Peabody Mus Nat Hist 48:3–102

    Article  Google Scholar 

  • Joyce WG (2015) The origin of turtles: a paleontological perspective. J Exp Zool B Mol Dev Evol 324:181–193

    Article  PubMed  Google Scholar 

  • Joyce WG, Lyson TR (2015) A review of the fossil record of turtles of the clade Baenidae. Bull Peabody Mus Nat Hist 56:147–183. https://doi.org/10.3374/014.056.0203

    Article  Google Scholar 

  • Joyce WG, Sterli J (2012) Congruence, non-homology, and the phylogeny of basal turtles. Acta Zool 93:149–159. https://doi.org/10.1111/j.1463-6395.2010.00491.x

    Article  Google Scholar 

  • Joyce WG, Parham JF, Gauthier JA (2004) Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. J Paleontol 78:989–1013

    Article  Google Scholar 

  • Joyce WG, Werneburg I, Lyson TR (2013a) The hooked element in the pes of turtles (Testudines): a global approach to exploring homology. J Anat 223:421–441

    PubMed  PubMed Central  Google Scholar 

  • Joyce WG, Parham JF, Lyson TR, Warnock RCM, Donoghue PCJ (2013b) A divergence dating analysis of turtles using fossil calibrations: an example of best practice. J Paleontol 87:612–634

    Article  Google Scholar 

  • Joyce WG, Rabi M, Clark JM, Xu X (2016) A toothed turtle from the late Jurassic of China and the global biogeographic history of turtles. BMC Evol Biol 16:236. https://doi.org/10.1186/s12862-016-0762-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Karl HV (1997) Zur Taxonomie und Morphologie einiger tertiärer Weichschildkröten unter besonderer Berücksichtigung von Trionychinae Zentraleuropas (Testudines: Trionychidae). PhD thesis, Universität Salzburg, Salzburg

    Google Scholar 

  • Kilias R (1957) Die funktionell-anatomische und systematische Bedeutung der Schläfenreduktion bei Schildkröten. Mitteilungen aus dem Zoologischen Museum in Berlin 33:307–354

    Article  Google Scholar 

  • Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13:1–14

    Article  PubMed  Google Scholar 

  • Lakjer T (1926) Studien über die Trigeminus-versorgte Kaumuskulatur der Sauropsiden. C.A. Reitsel Buchhandlung, Copenhagen

    Google Scholar 

  • Lambertz M, Böhme W, Perry SF (2010) The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Cryptodira) and related species, and its phylogenetic implications. Comp Biochem Physiol A Mol Integr Physiol 156:7. https://doi.org/10.1016/j.cbpa.2009.12.016

    Article  CAS  Google Scholar 

  • Laurin M (2002) Tetrapod phylogeny, amphibian origins, and the definition of the name Tetrapoda. Syst Biol 51:6

    Article  Google Scholar 

  • Laurin M, Piñeiro GH (2017) A reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes. Front Earth Sci 5:88

    Article  Google Scholar 

  • Laurin M, Reisz RR (1995) A reevaluation of early amniote phylogeny. Zool J Linnean Soc 113:165–223

    Article  Google Scholar 

  • Lautenschlager S, Witzmann F, Werneburg I (2016) Palate anatomy and morphofunctional aspects of interpterygoid vacuities in temnospondyl cranial evolution. Sci Nat 103:79. https://doi.org/10.1007/s00114-016-1402-z

    Article  CAS  Google Scholar 

  • Lee MSY (1993) The origin of the turtle body plan: bridging a famous morphological gap. Science 261:1716–1720

    Article  CAS  PubMed  Google Scholar 

  • Lee MSY (1995) Historical burden in systematics and the interrelationships of ‘parareptiles’. Biol Rev 70:459–547

    Article  Google Scholar 

  • Lee MSY (1997) Pareiasaur phylogeny and the origin of turtles. Zool J Linnean Soc 120:197–280

    Article  Google Scholar 

  • Lee MSY (2013) Turtle origins: insights from phylogenetic retrofitting and molecular scaffolds. J Evol Biol 26:2729–2738

    Article  CAS  PubMed  Google Scholar 

  • Lemell C, Weisgram J (1997) Feeding patterns of Pelusios castaneus (Chelonia: Pleurodira). Neth J Zool 47:429–441

    Article  Google Scholar 

  • Lemell P, Lemell C, Snelderwaard P, Gumpenberger M, Wochesländer R, Weisgram J (2002) Feeding patterns of Chelus fimbriatus (Pleurodira: Chelidae). J Exp Biol 205:1495–1506

    PubMed  Google Scholar 

  • Lemell P, Beisser CJ, Gumpenberger M, Snelderwaard P, Gemel R, Weisgram J (2010) The feeding apparatus of Chelus fimbriatus (Pleurodira; Chelidae)–adaptation perfected? Amphibia-Reptilia 31:97–107

    Article  Google Scholar 

  • Li C, Wu XC, Rieppel O, Wang LT, Zhao LJ (2008) An ancestral turtle from the Late Triassic of southwestern China. Nature 456:497–501

    Article  CAS  PubMed  Google Scholar 

  • Li C, Fraser NC, Rieppel O, Wu X-C (2018) A Triassic stem turtle with an edentulous beak. Nature 560:476–479 https://doi.org/10.1038/s41586-018-0419-1

    Article  CAS  PubMed  Google Scholar 

  • Loredo GA, Brukman A, Harris MP, Kagle D, Leclair EE, Gutman R, Denney E, Henkelman E, Murray BP, Fallon JF, Tuan RS, Gilbert SF (2001) Development of an evolutionarily novel structure: fibroblast growth factor expression in the carapacial ridge of turtle embryos. J Exp Zool Mol Dev Evol 291:274–281

    Article  CAS  Google Scholar 

  • Løvtrup S (1977) The phylogeny of Vertebrata. John Wiley, London

    Google Scholar 

  • Løvtrup S (1985) On the classification of the taxon Tetrapoda. Syst Zool 34:463–470

    Article  Google Scholar 

  • Luther A (1914) Über die vom N. trigeminus versorgte Muskulatur der Amphibien mit einem vergleichenden Ausblick über den Adductor mandibulae der Gnathostomen, und einem Beitrag zum Verständnis der Organisation der Anurenlarven. Acta Societatis Scientiarum Fenniciae 44:1–151

    Google Scholar 

  • Lyson TR, Joyce WG (2012) Evolution of the turtle bauplan: the topological relationship of the scapula relative to the ribcage. Biol Lett 8:1028–1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyson T, Bever GS, Bhullar BAS, Joyce WG, Gauthier JA (2010) Transitional fossils and the origin of turtles. Biol Lett 6:830–833. https://doi.org/10.1098/rsbl.2010.0371

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyson TR, Bever GS, Scheyer TM, Hsiang AY, Gauthier JA (2013) Evolutionary origin of the turtle shell. Curr Biol 23:1–7

    Article  CAS  Google Scholar 

  • Lyson TR, Schachner ER, Botha-Brink J, Scheyer TM, Lambertz M, Bever GS, Rubidge BS, Queiroz K (2014) Origin of the unique ventilatory apparatus of turtles. Nat Commun 5:1–11

    Article  CAS  Google Scholar 

  • Lyson TR, Rubidge Bruce S, Scheyer TM, de Queiroz K, Schachner Emma R, Smith Roger MH, Botha-Brink J, Bever GS (2016) Fossorial origin of the turtle shell. Curr Biol 26:1887–1894. https://doi.org/10.1016/j.cub.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  • MacDougall MJ, Modesto SP, Brocklehurst N, Verrière A, Reisz RR, Fröbisch J (2018) Response: a reassessment of the taxonomic position of mesosaurs, and a surprising phylogeny of early amniotes. Front Earth Sci 6:99

    Article  Google Scholar 

  • Maier W, Werneburg I (2014) Schlüsselereignisse der organismischen Makroevolution. Scidinge Hall, Tübingen

    Google Scholar 

  • Mannen H, Li SSL (1999) Molecular evidence for a clade of turtles. Mol Phylogenet Evol 13:144–148

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto R, Evans SE (2017) The palatal dentition of tetrapods and its functional significance. J Anat 230:47–65. https://doi.org/10.1111/joa.12534

    Article  PubMed  Google Scholar 

  • Mulcahy DG, Noonan BP, Moss T, Townsend TM, Reeder TW, Sites JW Jr, Wiens JJ (2012) Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles. Mol Phylogenet Evol 65:974–991. https://doi.org/10.1016/j.ympev.2012.08.018

    Article  PubMed  Google Scholar 

  • Mulisch M, Welsch U (2015) Romeis-Mikroskopische Technik. Springer, Berlin

    Book  Google Scholar 

  • Müller J (2003) Early loss and multiple return of the lower temporal arcade in diapsid reptiles. Naturwissenschaften 90:473–476

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Sterli J, Anquentin J (2011) Carotid circulation in amniotes and its implications for turtle relationships. Neues Jahrbuch der Gelogie und Paläontologie, Abhandlungen 261:289–297

    Article  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Ohya YK, Narita Y, Kuratani S (2007) On the carapacial ridge in turtle embryos: its developmental origin, function and the chelonian body plan. Development 134:2219–2226

    Article  CAS  PubMed  Google Scholar 

  • Nagashima H, Sugahara F, Takeshi M, Ericsson R, Kawashima-Ohya Y, Narita Y, Kuratani S (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325:193–196

    Article  CAS  PubMed  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S (2012) Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int 87:1–13

    Article  PubMed  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S (2013) Origin of the turtle body plan: the folding theory to illustrate turtle-specific developmental repatterning. In: Morphology and evolution of turtles. Springer, Dordrecht, pp 37–50

    Chapter  Google Scholar 

  • Nagashima H, Sugahara F, Takechi M, Sato N, Kuratani S (2015) On the homology of the shoulder girdle in turtles. J Exp Zool B Mol Dev Evol 324(3):244–254

    Article  PubMed  Google Scholar 

  • Natchev N, Heiss E, Lemell P, Stratev D, Weisgram J (2009) Analysis of prey capture and food transport kinematics in two Asian box turtles, Cuora amboinensis and Cuora flavomarginata (Chelonia, Geoemydidae), with emphasis on terrestrial feeding patterns. Zoology 112:113–127

    Article  PubMed  Google Scholar 

  • Natchev N, Lemell P, Heiss E, Beisser C, Weisgram J (2010) Aquatic feeding in a terrestrial turtle: a functional-morphological study of the feeding apparatus in the Indochinese box turtle Cuora galbinifrons (Testudines, Geoemydidae). Zoomorphology 129:111–119

    Article  Google Scholar 

  • Natchev N, Tzankov N, Werneburg I, Heiss E (2015) Feeding behaviour in a ‘basal’ tortoise provides insights on the transitional feeding mode at the dawn of modern land turtle evolution. PeerJ 3:e1172. https://doi.org/10.7717/peerj.1172

    Article  PubMed  PubMed Central  Google Scholar 

  • Neenan JM, Klein N, Scheyer TM (2013) European origin of placodont marine reptiles and the evolution of crushing dentition in Placodontia. Nat Commun 4:1621. https://doi.org/10.1038/ncomms2633

    Article  CAS  PubMed  Google Scholar 

  • Nick L (1912) Das Kopfskelett von Dermochelys coriacea L. Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 33:1–238

    Google Scholar 

  • Ogushi K (1911) Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japanicus). I. Mitteilung. Morphologisches Jahrbuch 43:1–106

    Google Scholar 

  • Ogushi K (1913a) Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japanicus). II. Mitteilung: Muskel- und peripheres Nervensystem. Morphologisches Jahrbuch 46:299–562

    Google Scholar 

  • Ogushi K (1913b) Zur Anatomie der Hirnnerven und des Kopfsympathicus von Trionyx japonicus nebst einigen kritischen Bemerkungen. Morphologisches Jahrbuch 45:441–480

    Google Scholar 

  • Ogushi K (1914) Der Kehlkopf von Trionyx japonicus. Anat Anz 45:481–503

    Google Scholar 

  • Olson EC (1947) The family Diadectidae and its nearing on the classification of turtles. Fieldiana Geology 11:1–53

    Google Scholar 

  • Osborn HF (1903) On the primary division of the Reptilia into two sub-classes, Synapsida and Diapsida. Science 17:275–276

    Article  CAS  PubMed  Google Scholar 

  • Poglayen-Neuwall I (1953) Untersuchungen der Kiefermuskulatur und deren Innervation bei Schildkröten. Acta Zool 34:241–292

    Article  Google Scholar 

  • Poglayen-Neuwall I (1954) Die Kiefermuskulatur der Eidechsen und ihre Innervation. Z Wiss Zool 158:79–132

    Google Scholar 

  • Poglayen-Neuwall I (1966) Bemerkungen zur Morphologie und Innervation der Trigeminusmuskulatur von Chelus fimbriatus (Schneider). Zoologische Beiträge 12:43–65

    Google Scholar 

  • Pritchard PCH (1984) Piscivory in turtles, and evolution of long-necked Chelidae. In: Ferguson MWJ (ed) The structure, development and evolution of Reptiles. A Festschrift in honour of Professor A.d’A. Bellairs on the occasion of his retirement, Symposia of the Zoological Society of London, vol 52. Academic Press, London

    Google Scholar 

  • Rabi M, Zhou C-F, Wings O, Ge S, Joyce WG (2013) A new xinjiangchelyid turtle from the middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles. BMC Evol Biol 13:1–28

    Article  Google Scholar 

  • Rabi M, Sukanov VB, Egorova VN, Danilov I, Joyce WG (2014) Osteology, relationships, and ecology of Annemys (Testudines, Eucryptodira) from the Late Jurassic of Shar Teg, Mongolia and phylogenetic definitions for Xinjiangchelyidae, Sinemydidae, and Macrobaenidae. J Vertebr Paleontol 34:327–352

    Article  Google Scholar 

  • Ray CE (1959) A sesamoid bone in the jaw musculature of Gopherus polyphemus (Reptilia: Testudininae). Anat Anz 107:85–91

    CAS  PubMed  Google Scholar 

  • Reisz RR, Head JJ (2008) Turtle origins out to sea. Nature 456:450–451

    Article  CAS  PubMed  Google Scholar 

  • Rhodin AGJ, Iverson JB, Bour R, Fritz U, Georges A, Shaffer HB, van Dijk PPJ (2017) Turtles of the world: annotated checklist and atlas of taxonomy, synonymy, distribution, and conservation status. In: AGJ R, Iverson JB, van Dijk PP, Saumure RA, Buhlmann KA, Pritchard PCH, Mittermeier RA (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group, vol 7, 8th edn. Chelonian Research Monographs, Lunenburg, pp 1–292

    Google Scholar 

  • Rice R, Kallonen A, Cebra-Thomas J, Gilbert SF (2016) Development of the turtle plastron, the order-defining skeletal structure. Proc Natl Acad Sci U S A 113:6. https://doi.org/10.1073/pnas.1600958113

    Article  CAS  Google Scholar 

  • Rieppel O (1980) The trigeminal jaw adductor musculature of Tupinambis, with comments on the phylogenetic relationship of the Teiidae (Reptilia, Lacertilia). Zool J Linnean Soc 69:1–29

    Article  Google Scholar 

  • Rieppel O (1984) The structure of the skull and jaw adductor musculature in the Gekkota, with comments on the phylogenetic-relationships of the Xantusiidae (Reptilia, Lacertilia). Zool J Linnean Soc 82:291–318

    Article  Google Scholar 

  • Rieppel O (1987) The development of the trigeminal jaw adductor musculature and associated skull elements in the lizard Podarcis sicula. J Zool 212:131–150

    Article  Google Scholar 

  • Rieppel O (1990) The structure and development of the jaw adductor musculature in the turtle Chelydra serpentina. Zool J Linnean Soc 98:27–62

    Article  Google Scholar 

  • Rieppel O (1993) Patterns of diversity in the reptilian skull. In: Hanken J, Hall BK (eds) The skull, patterns of structural and systematic diversity, vol 2. University of Chicago Press, Chicago, pp 344–389

    Google Scholar 

  • Rieppel O (2000) Turtles as diapsid reptiles. Zool Scr 29:199–212

    Article  Google Scholar 

  • Rieppel O (2004) Kontroversen innerhalb der Tetrapoda—die Stellung der Schildkröten (Testudines). Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 43:201–221

    Google Scholar 

  • Rieppel O (2008) The relationships of turtles within amniotes. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC Press, Boca Raton, pp 345–353

    Google Scholar 

  • Rieppel O (2013) The evolution of the turtle shell. In: Gardner J, Brinkman D, Holroyd P (eds) Vertebrate paleobiology and paleoanthropology series, Morphology and evolution of turtles. Springer, Dordrecht, pp 51–61

    Google Scholar 

  • Rieppel O, Reisz RR (1999) The origin and early evolution of turtles. Annu Rev Ecol Syst 30:1–22

    Article  Google Scholar 

  • Robert McNeel & Associates (2003) Rhinoceros 3D. Version 3.0 SR3, November. Barcelona

    Google Scholar 

  • Romer AS (1956) Osteology of the reptiles. The University of Chicago Press, Chicago

    Google Scholar 

  • Rougier GW, De La Fuente MS, Arcucci AB (1995) Late Triassic turtles from South America. Science 268:855–858

    Google Scholar 

  • Scheyer TM, Sander PM (2007) Shell bone histology indicates terrestrial palaeoecology of basal turtles. Proc R Soc B Biol Sci 274:1885–1893. https://doi.org/10.1098/rspb.2007.0499

    Article  Google Scholar 

  • Scheyer TM, Werneburg I, Mitgutsch C, Delfino M, Sánchez-Villagra MR (2013) Three ways to tackle the turtle: integrating fossils, comparative embryology and microanatomy. In: Gardner J, Brinkman D, Holroyd P (eds) Vertebrate paleobiology and paleoanthropology series. Springer, Dordrecht, pp 63–70

    Google Scholar 

  • Schoch RR, Sues HD (2015) A middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 523:584–587. https://doi.org/10.1038/nature14472

    Article  CAS  PubMed  Google Scholar 

  • Schoch RR, Sues HD (2016) The diapsid origin of turtles. Zoology 119:3. https://doi.org/10.1016/j.zool.2016.01.004

    Article  Google Scholar 

  • Schulman H (1906) Vergleichende Untersuchungen über die Trigeminus-Muskulatur der Monotremen, sowie die dabei in Betracht kommenden Nerven und Knochen. In: Jenaische Denkschriften, Zoologische Forschungsreisen in Australien und dem Malayischen Archipel. Mit Unterstützung des Herrn Dr. Paul von Ritter ausgeführt in den Jahren 1891–1893 (III. 2. Teil), vol 2, vol 6. G. Fischer, Jena, pp 297–400

    Google Scholar 

  • Schumacher GH (1954/55) Beiträge zur Kiefermuskulatur der Schildkröten: II. Mitteilung. Bau des M. adductor mandibularis unter spezieller Berücksichtigung der Fascien des Kopfes bei Platysternon megacephalum, Emys orbicularis, Testudo graeca, Pelomedusa subrufa, Clemmys caspica riculata, Graptemys geographica, Hardella thurrjii, Macrochelys temminckii, Emydura krefftii, Hydromedusa tectifera, Chelodina longicollis, Trionyx punctatus, Amyda sinensis und Dogania subplana. Wissenschaftliche Zeitschrift der Ernst Moritz Arndt-Universität Greifswald—Mathematisch-naturwissenschaftliche Reihe 4:501–518

    Google Scholar 

  • Schumacher GH (1954a) Beiträge zur Kiefermuskulatur der Schildkröten. I. Mitteilung. Bau des M. adductor mandibularis unter spezieller Berücksichtigung des M. pterygoideus bei Chelone, Podocnemis, Sternothaerus und Testudo elephantopus. PhD thesis, Ernst-Moritz-Arndt-Universität, Greifswald

    Google Scholar 

  • Schumacher GH (1954b) Beiträge zur Kiefermuskulatur der Schildkröten: III. Mitteilung. Bau des M. Adductor mandibularis bei Macrochelys temminckii, Platysternon megacephalum, Clemmys caspica rivulata, Emys orbicularis, Graptemys geographica, Hardella thurjii, Testudo graeca, Amyda sinensis, Dogania subplana, Trionyx punctatus, Pelomedusa subrufa, Chelodina longicollis, Hydromedusa tectifera und Emydura krefftii. Wissenschaftliche Zeitschrift der Ernst Moritz Arndt-Universität Greifswald—Mathematisch-naturwissenschaftliche Reihe 4:559–588

    Google Scholar 

  • Schumacher GH (1956) Morphologische Studie zum Gleitmechanismus des M. adductor mandibulae externus bei Schildkröten. Anat Anz 103:1–12

    CAS  PubMed  Google Scholar 

  • Schumacher GH (1972) Die Kopf- und Halsregion der Lederschildkröte Dermochelys coriacea (LINNAEUS 1766)—Anatomische Untersuchungen im Vergleich zu anderen rezenten Schildkröten—Mit 7 Figuren im Text und 31 Tafeln, Abhandlungen der Akademie der Wissenschaften der DDR, vol 2. Akademie, Berlin

    Google Scholar 

  • Schumacher GH (1973) The head muscles and hyolaryngeal skeleton of turtles and crocodilians. In: Gans C, Parsons TS (eds) Biology of the Reptilia, morphology D, vol 4. Academic Press, London, pp 101–199

    Google Scholar 

  • Seeley HG (1892) On a new reptile from Welte Vreden (Beaufort West) Eunotosaurus africanus (Seeley). Quat J Geol Soc 48:3

    Google Scholar 

  • Shaffer HB (2009) Turtles (Testudines). In: Hedges SB, Kumar S (eds) The TimeTree of life. Oxford University Press, New York, pp 398–401

    Google Scholar 

  • Stayton CT (2011) Terrestrial feeding in aquatic turtles: environment-dependent feeding behavior modulation and the evolution of terrestrial feeding in Emydidae. J Exp Biol 214:4083–4091

    Article  PubMed  Google Scholar 

  • Sterli J (2010) Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles. Contrib Zool 79:93–106

    Article  Google Scholar 

  • Sterli J, de la Fuente M (2010) Anatomy of Condorchelys antiqua STERLI, 2008, and the origin of the modern jaw closure mechanism in turtles. J Vertebr Paleontol 30:351–366

    Google Scholar 

  • Sterli J, Joyce WG (2007) The cranial anatomy of the early Jurassic turtle Kayentachelys aprix. Acta Palaeontol Pol 52:675–694

    Google Scholar 

  • Sterli J, Müller J, Anquetin J, Hilger A (2010) The parapasisphenoid complex in Mesozoic turtles and the evolution of the testudinate basicranium. Can J Earth Sci 47:1337–1346

    Article  Google Scholar 

  • Summers AP, Darouian KF, Richmond AM, Brainerd EL (1998) Kinematics of aquatic and terrestrial prey capture in Terrapene carolina, with implications for the evolution of feeding in cryptodire turtles. J Exp Zool 281:280–287

    Article  CAS  PubMed  Google Scholar 

  • Tarsitano SF, Oelofsen B, Frey E, Riess J (2001) The origin of temporal fenestra. S Afr J Sci 97:334–336

    Google Scholar 

  • Thomson JT (1932) The anatomy of the tortoise. Sci Proc R Dublin Soc New Series 20:359–461 324 plates

    Google Scholar 

  • Tokita M (2004) Morphogenesis of parrot jaw muscles: understanding the development of an evolutionary novelty. J Morphol 259:69–81. https://doi.org/10.1002/Jmor.10172

    Article  PubMed  Google Scholar 

  • Tsai HP, Holliday CM (2011) Ontogeny of the Alligator cartilago transiliens and its significance for sauropsid jaw muscle evolution. PLoS One 6:e24935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji LA, Müller J (2009) Assembling the history of the Parareptilia: phylogeny, diversification, and a new definition of the clade. Fossil Record 12:71–81

    Article  Google Scholar 

  • Tvarožková B (2006) Development of the temporal emargination in turtles and the temporal fenestration in crocodilians: the origin of an anapsid-like chelonian skull. Masters thesis, Charles University in Prague, Prague

    Google Scholar 

  • Underwood G (1970) The eye. In: Gans C, Parsons TS (eds) Biology of the Reptilia, morphology D, vol 2. Academic Press, London, pp 1–97

    Google Scholar 

  • Versluys J (1919) Über die Phylogenie der Schläfengruben und Jochbogen bei den Reptilia. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abteilung B, Biologische Wissenschaften 13:1–29

    Google Scholar 

  • Vitek NS, Joyce W (2015) A review of the fossil record of new world turtles of the clade pan-Trionychidae. Bull Peabody Mus Nat Hist 56:185–244

    Article  Google Scholar 

  • Walker WF Jr (1973) The locomotor apparatus of Testudinines. In: Gans C, Parsons TS (eds) Biology of the Reptilia, morphology D, vol 4. Academic Press, London, pp 1–100

    Google Scholar 

  • Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, Yin Y, Aken B, Zhang G, Irie N (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45:701–706. https://doi.org/10.1038/ng.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson DMS (1914) Eunotosaurus africanus Seeley, and the ancestry of the Chelonia. Proc Zool Soc London 11:1011–1020

    Google Scholar 

  • Weisgram J (1985) Feeding mechanisms of Claudius angustatus COPE 1865. In: Dunker HR, Fleischer G (eds) Fortschritte der Zoologie: Functional morphology in vertebrates, vol 30. Gustav Fischer, Stuttgart, pp 256–260

    Google Scholar 

  • Werneburg I (2011) The cranial musculature in turtles. Palaeontol Electron 14:15a 99 pages

    Google Scholar 

  • Werneburg I (2012) Temporal bone arrangements in turtles: an overview. J Exp Zool B Mol Dev Evol 318:235–249

    Article  PubMed  Google Scholar 

  • Werneburg I (2013a) Jaw musculature during the dawn of turtle evolution. Org Divers Evol 13:225–254

    Article  Google Scholar 

  • Werneburg I (2013b) The tendinous framework in the temporal skull region of turtles and considerations about its morphological implications in amniotes: a review. Zool Sci 31:141–153

    Article  Google Scholar 

  • Werneburg I (2015) Neck motion in turtles and its relation to the shape of the temporal skull region. Comptes Rendus Palevol 14:527–548

    Article  Google Scholar 

  • Werneburg I, Maier W (2018) Considerations on the development of the akinetic skull in pleurodire and cryptodire turtles. In: Turtle Evolution Symposium. Scidinge Hall, Tübingen, pp 90–91

    Google Scholar 

  • Werneburg I, Sánchez-Villagra MR (2009) Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evol Biol 9:1–9. https://doi.org/10.1186/1471-2148-9-82

    Article  Google Scholar 

  • Werneburg I, Maier W, Joyce WG (2013) Embryonic remnants of intercentra and cervical ribs in turtles. Biol Open 2:1103–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Werneburg I, Hinz JK, Gumpenberger M, Volpato V, Natchev N, Joyce WG (2015a) Modeling neck mobility in fossil turtles. J Exp Zool B Mol Dev Evol 324:230–243

    Article  PubMed  Google Scholar 

  • Werneburg I, Wilson LAB, Parr WCH, Joyce WG (2015b) Evolution of neck vertebral shape and neck retraction at the transition to modern turtles: an integrated geometric morphometric approach. Syst Biol 64:187–204

    Article  PubMed  Google Scholar 

  • Williams EE (1950) Variation and selection in the cervical central articulations of living turtles. Bull Am Mus Nat Hist 94:509–561

    Google Scholar 

  • Williston SW (1917) The phylogeny and classification of reptiles. J Geol 25:411–421

    Article  Google Scholar 

  • Witzmann F, Werneburg I (2017) The palatal interpterygoid vacuities of temnospondyls and the implications for the associated eye- and jaw musculature. Anat Rec 300:1240–1269. https://doi.org/10.1002/ar.23582

    Article  CAS  Google Scholar 

  • Wochesländer R, Hilgers H, Weisgram J (1999) Feeding mechanism of Testudo hermanni boettgeri (Chelonia, Cryptodira). Neth J Zool 49:1–13

    Article  Google Scholar 

  • Yntema CL (1968) A series of stages in the embryonic development of Chelydra serpentina. J Morphol 125:219–251

    Article  CAS  PubMed  Google Scholar 

  • Zangerl R (1948) The methods of comparative anatomy and its contribution to the study of evolution. Evolution 2:351–374

    Article  CAS  PubMed  Google Scholar 

  • Zardoya R, Meyer A (1998) Complete mitochondrial genome suggests diapsid affinities of turtles. Proc Natl Acad Sci U S A 95:14226–14231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zardoya R, Meyer A (2001) The evolutionary position of turtles revised. Naturwissenschaften 88:193–200

    Article  CAS  PubMed  Google Scholar 

  • Zdansky O (1923) Über die Temporalregion des Schildkrötenschädels. Bull Geol Inst Univ Upsala 19:89–114

    Google Scholar 

  • Zhou C-F, Rabi M (2015) A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles. Sci Rep 5:16299. https://doi.org/10.1038/srep16299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Janine Ziermann, Raul Diaz Jr., and Rui Diogo are thanked for the invitation to write this chapter. We would like to thank Juliane Hinz (Tübingen) for help with the 3D models and Wolfgang Maier for access to the histological sections. We also thank two anonymous reviewers for their suggestions. GSF was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) grants 2016/03934-2 and 2014/2539-5. IW was supported by SNF advanced postdoc mobility grant P300PA_164720.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel S. Ferreira or Ingmar Werneburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, G.S., Werneburg, I. (2019). Evolution, Diversity, and Development of the Craniocervical System in Turtles with Special Reference to Jaw Musculature. In: Ziermann, J., Diaz Jr, R., Diogo, R. (eds) Heads, Jaws, and Muscles. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93560-7_8

Download citation

Publish with us

Policies and ethics