Skip to main content
Log in

Body plan of turtles: an anatomical, developmental and evolutionary perspective

  • Review article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoyama H, Asamoto K (2000) The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras. Mech Dev 99:71–82

    Article  PubMed  CAS  Google Scholar 

  • Aoyama H, Mizutani-koseki S, Koseki H (2005) Three developmental compartments involved in rib formation. Int J Dev Biol 49:325–333

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12:725–730

    Article  PubMed  CAS  Google Scholar 

  • Braun T, Arnold HH (1995) Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J 14:1176–1186

    PubMed  CAS  Google Scholar 

  • Braun T, Bober E, Rudnicki MA, Jaenisch R, Arnold HH (1994) MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development 120:3083–3092

    PubMed  CAS  Google Scholar 

  • Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382

    Article  PubMed  CAS  Google Scholar 

  • Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528

    Article  PubMed  CAS  Google Scholar 

  • Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 18:235–248

    Article  Google Scholar 

  • Burke AC, Nowicki JL (2003) A new view of patterning domains in the vertebrate mesoderm. Dev Cell 4:159–165

    Article  PubMed  CAS  Google Scholar 

  • Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346

    PubMed  CAS  Google Scholar 

  • Burke AC (1989) Development of the turtle carapace: implications for the evolution of a novel bauplan. J Morphol 199:363–378

    Article  Google Scholar 

  • Burke AC (1991) The development and evolution of the turtle body plan. Inferring intrinsic aspects of the evolutionary process from experimental embryology. Am Zool 31:616–627

    Google Scholar 

  • Burke AC (2009) Turtles…again. Evol Dev 11:622–624

    Article  PubMed  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Carus KG (1834) Lehrbuch der Vergleichenden Zootomie, vol 1, 2nd edn. Fleischer, Leipzig

    Google Scholar 

  • Cebra-Thomas JA, Betters E, Yin M, Plafkin C, McDow K, Gilbert SF (2007) Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol Dev 9:267–277

    Article  PubMed  CAS  Google Scholar 

  • Cebra-Thomas J, Tan F, Sistla S et al (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool 304B:558–569

    Article  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1974) Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia 30:1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventrolateral abdominal muscles in the avian embryo: an experimental and ultrastructural study. Anat Embryol 166:87–101

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32

    Article  PubMed  CAS  Google Scholar 

  • Claessens LPAM (2004) Dinosaur gastralia; origin, morphology, and function. J Vertebr Paleontol 24:89–106

    Article  Google Scholar 

  • Clark K, Bender G, Murray BP et al (2001) Evidence for the neural crest origin of turtle plastron bones. Genesis 31:111–117

    Article  PubMed  CAS  Google Scholar 

  • Collins CA, Watt FM (2008) Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and notch signalling. Dev Biol 324:55–67

    Article  PubMed  CAS  Google Scholar 

  • Cuvier G (1800) Leçons d’Anatomie Comparée, vol 1. Boudouin, Paris

    Google Scholar 

  • Danilkovitch-Miagkova A, Miagkov A, Skeel A, Nakaigawa N, Zbar B, Leonard EJ (2001) Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the β-catenin pathway. Mol Cell Biol 21:5857–5868

    Article  PubMed  CAS  Google Scholar 

  • Evans DJR (2003) Contribution of somitic cells to the avian ribs. Dev Biol 256:114–126

    Article  PubMed  CAS  Google Scholar 

  • Evans DJ, Valasek P, Schmidt C, Patel K (2006) Skeletal muscle translocation in vertebrates. Anat Embryol 211:43–50

    PubMed  Google Scholar 

  • Fraidenraich D, Iwahori A, Rudnicki M, Basilico C (2000) Activation of fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog. Dev Biol 225:392–406

    Article  PubMed  CAS  Google Scholar 

  • Fraidenraich D, Lang R, Basilico C (1998) Distinct regulatory elements govern Fgf4 gene expression in the mouse blastocyst, myotomes, and developing limb. Dev Biol 204:197–209

    Article  PubMed  CAS  Google Scholar 

  • Gaffney ES (1990) The comparative osteology of the Triassic turtle Proganochelys. Bull Am Mus Nat Hist 194:1–263

    Google Scholar 

  • Gegenbaur C (1898) Vergleichende Anatomie der Wirbelthiere. Engelmann, Leipzig

    Google Scholar 

  • Geoffroy Saint-Hilaire E (1818) Philosophie Anatomique, vol 1. Baillière, Paris

    Google Scholar 

  • Gilbert SC (2010) Developmental biology, 9th edn. Sinauer, Sunderland

    Google Scholar 

  • Gilbert SF, Loredo GA, Brukman A, Burke AC (2001) Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol Dev 3:47–58

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF, Bender G, Betters E, Yin M, Cebra-Thomas JA (2007) The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integr Comp Biol 47:401–408

    Article  PubMed  Google Scholar 

  • Gilbert SF, Cebra-Thomas JA, Burke AC (2008) How the turtle gets its shell. In: Wyneken J, Godfrey MH, Bels V (eds) Biology of turtles. CRC, Boca Raton, pp 1–16

    Google Scholar 

  • Goette A (1899) Über die Entwicklung des knöchernen Ruckenschildes (Carapax) der Schildkröten. Z Wiss Zool 66:407–434

    Google Scholar 

  • Goodrich ES (1930) Studies on the structure and development of vertebrates. McMillan, London

    Google Scholar 

  • Grass S, Arnold HH, Braun T (1996) Alterations in somite patterning of Myf-5-deficient mice: a possible role for FGF-4 and FGF-6. Development 122:141–150

    PubMed  CAS  Google Scholar 

  • Haeckel E (1895) Systematische Phylogenie. Entwurf eines Natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. Reimer, Berlin

    Google Scholar 

  • Hall BK (1998) Evolutionary developmental biology, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–91

    Article  Google Scholar 

  • Huang R, Zhi Q, Neubüser A et al (1996) Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Acta Anat 155:231–241

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Zhi Q, Schmidt C, Wilting J, Brand-Saberi B, Christ B (2000a) Sclerotomal origin of the ribs. Development 127:527–532

    PubMed  CAS  Google Scholar 

  • Huang R, Zhi Q, Scmhidt C, Brand-Saberi B, Christ B (2000b) New experimental evidence for somite resegmentation. Anat Embryol 202:195–200

    Article  PubMed  CAS  Google Scholar 

  • Huang R, Zhi Q, Wilting J, Christ B (1994) The fate of the somitocoele cells in avian embryos. Anat Embryol 190:243–250

    Article  PubMed  CAS  Google Scholar 

  • Joyce WG, Lucas SG, Scheyer TM, Heckert AB, Hunt AP (2009) A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell. Proc R Soc Lond B276:507–513

    Article  Google Scholar 

  • Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ, Rudnicki MA (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124:4729–4738

    PubMed  CAS  Google Scholar 

  • Kato N, Aoyama H (1998) Dermomyotomal origin of the ribs as revealed by extirpation and transplantation experiments in chick and quail embryos. Development 125:3437–3443

    PubMed  CAS  Google Scholar 

  • Kawashima-Ohya Y, Narita Y, Nagashima H, Usuda U, Kuratani S (2011) Hepatocyte growth factor is crucial for development of the carapace in turtles. Evol Dev 13:260–268

    Article  PubMed  Google Scholar 

  • Kuraku S, Usuda R, Kuratani S (2005) Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 7:3–17

    Article  PubMed  CAS  Google Scholar 

  • Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of the turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13:1–14

    Article  PubMed  Google Scholar 

  • Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234:824–834

    Article  PubMed  Google Scholar 

  • Kusakabe R, Kuratani S (2007) Evolutionary perspectives from development of mesodermal components in the lamprey. Dev Dyn 236:410–420

    Article  CAS  Google Scholar 

  • Kälin J (1945) Zur Morphogenese des Panzers bei den Schildkröten. Acta Anat 1:144–176

    Article  PubMed  Google Scholar 

  • Lee MSY (1993) The origin of the turtle body plan: bridging a famous morphological gap. Science 261:1716–1720

    Article  PubMed  CAS  Google Scholar 

  • Lee MSY (1996) Correlated progression and the origin of turtles. Nature 379:812–815

    Article  CAS  Google Scholar 

  • Li C, Wu X, Rieppel O, Wang L, Zhao L (2008) An ancestral turtle from the Late Triassic of southwestern China. Nature 45:497–501

    Article  CAS  Google Scholar 

  • Loredo GA, Brukman A, Harris MP et al (2001) Development of an evolutionarily novel structure: fibroblast growth factor expression in the carapacial ridge of turtle embryos. J Exp Zool 291B:274–281

    Article  Google Scholar 

  • Monga SP, Mars WM, Pediaditakis P et al (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071

    PubMed  CAS  Google Scholar 

  • Moustakas JE (2008) Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evol Dev 10:29–36

    Article  PubMed  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Ohya YK, Narita Y, Kuratani S (2007) On the carapacial ridge in turtle embryos: its developmental origin, function, and the chelonian body plan. Development 134:2219–2226

    Article  PubMed  CAS  Google Scholar 

  • Nagashima H, Sugahara F, Takechi M et al (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325:193–196

    Article  PubMed  CAS  Google Scholar 

  • Nagashima H, Uchida K, Yamamoto K, Kuraku S, Usuda R, Kuratani S (2005) Turtle-chicken chimera: an experimental approach to understanding evolutionary innovation in the turtle. Dev Dyn 232:149–161

    Article  PubMed  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Kawashima-Ohya Y, Narita Y, Kuratani S (in press) Origin of the turtle body plan—the folding theory to illustrate turtle-specific developmental repatterning. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification. Springer, Dordrecht

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and cadherin pathways. Science 303:1483–1487

    Article  PubMed  CAS  Google Scholar 

  • Nowicki JL, Burke AC (2000) Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm. Development 127:4265–4275

    PubMed  CAS  Google Scholar 

  • Nowicki JL, Takimoto R, Burke AC (2003) The lateral somitic frontier: dorso-ventral aspects of anterio-posterior regionalization in avian embryos. Mech Dev 120:227–240

    Article  PubMed  CAS  Google Scholar 

  • Ogushi K (1911) Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japonicus). Morphol Jahrb 43:1–106

    Google Scholar 

  • Ohya YK, Kuraku S, Kuratani S (2005) Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle. J Exp Zool 304B:107–118

    Article  CAS  Google Scholar 

  • Ohya YK, Usuda R, Kuraku S, Nagashima H, Kuratani S (2006) Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing and unusual expression pattern. Evol Dev 8:415–423

    Article  PubMed  CAS  Google Scholar 

  • Olivera-Martinez I, Coltey M, Dhouailly D, Pourqui O (2000) Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development 127:4611–4617

    PubMed  CAS  Google Scholar 

  • Olson EN, Arnold HH, Rigby PWJ, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85:1–4

    Article  PubMed  CAS  Google Scholar 

  • Owen FRS (1849) On the development and homologies of the carapace and plastron of the chelonian reptiles. Philos Trans R Soc Lond 139:151–171

    Google Scholar 

  • Parker WK (1868) A monograph on the structure and development of the shoulder-girdle and sternum in the Vertebrata. Hardwicke, London

    Google Scholar 

  • Patapoutian A, Yoon JK, Miner JH, Wang S, Stark K, Wold B (1995) Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121:3347–3358

    PubMed  CAS  Google Scholar 

  • Pinot M (1969) Etude expérimentale de la morphogenése de la cage thoracique chez l’embryon de poulet: mécanismes et origine du matériel. J Embryol Exp Morph 21:149–164

    PubMed  CAS  Google Scholar 

  • Rasola A, Fassetta M, De Bacco F et al (2007) A positive feedback loop between hepatocyte growth factor receptor and β-catenin sustains colorectal cancer cell invasive growth. Oncogene 26:1078–1087

    Article  PubMed  CAS  Google Scholar 

  • Rathke H (1848) Ueber die Entwickelung der Schildkröten. Vieweg, Braunschweig

    Book  Google Scholar 

  • Rieppel O (2001) Turtles as hopeful monsters. BioEssays 23:987–991

    Article  PubMed  CAS  Google Scholar 

  • Rieppel O (2009) How did the turtle get its shell? Science 325:154–155

    Article  PubMed  CAS  Google Scholar 

  • Rieppel O (in press) The evolution of the turtle shell. In: Brinkman DB, Holroyd PA, Gardner JD (eds) Morphology and evolution of turtles: origin and early diversification. Springer, Dordrecht

  • Romer AS (1956) Osteology of the reptiles. University of Chicago Press, Chicago

    Google Scholar 

  • Romer AS, Parsons TS (1977) The vertebrate body. Saunders, Philadelphia

    Google Scholar 

  • Ruckes H (1929) Studies in chelonian osteology part II, the morphological relationships between the girdles, ribs and carapace. Ann NY Acad Sci 31:81–120

    Article  Google Scholar 

  • Saunders JW Jr (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108:363–403

    Article  PubMed  Google Scholar 

  • Saunders JW Jr, Reuss C (1974) Inductive and axial properties of prospective wing-bud mesoderm in the chick embryo. Dev Biol 38:41–50

    Article  PubMed  Google Scholar 

  • Scheyer TM, Brüllmann B, Sánchez-Villagra MR (2008) The ontogeny of the shell in side-necked turtles, with emphasis on the homologies of costal and neural bones. J Morphol 269:1008–1021

    Article  PubMed  Google Scholar 

  • Seno T (1961) An experimental study on the formation of the body wall in the chick. Acta Anat 45:60–82

    Article  PubMed  CAS  Google Scholar 

  • Sensenig EC (1949) The early development of the human vertebral column. Contrib Embryol 33:23–40

    Google Scholar 

  • Shearman RM, Burke AC (2009) The lateral somitic frontier in ontogeny and phylogeny. J Exp Zool 312B:603–612

    Article  Google Scholar 

  • Shimomura Y, Agalliu D, Vonica A et al (2010) APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 464:1043–1047

    Article  PubMed  CAS  Google Scholar 

  • Sudo H, Takahashi Y, Tonegawa A et al (2001) Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Dev Biol 232:284–300

    Article  PubMed  CAS  Google Scholar 

  • Summerbell D, Lewis JH, Wolpert L (1973) Positional information in chick limb morphogenesis. Nature 224:492–496

    Article  Google Scholar 

  • Sweeney RM, Watterson RL (1969) Rib development in chick embryos analyzed by means of tantalum foil blocks. Am J Anat 126:127–150

    Article  PubMed  CAS  Google Scholar 

  • Tabin C, Wolpert L (2007) Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Gen Dev 21:1433–1442

    Article  CAS  Google Scholar 

  • Takahashi M, Fujita M, Furukawa Y et al (2002) Isolation of a novel human gene, APCDD1, as a direct target of the β-catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Cancer Res 62:5651–5656

    PubMed  CAS  Google Scholar 

  • Takahashi M, Nakamura Y, Obama K, Furukawa Y (2005) Identification of SP5 as a downstream gene of the β-catenin/Tcf pathway and its enhanced expression in human colon cancer. Int J Oncol 27:1483–1487

    PubMed  CAS  Google Scholar 

  • Theißen G (2006) The proper place of hopeful monsters in evolutionary biology. Theory Biosci 124:349–369

    Article  PubMed  Google Scholar 

  • Theißen G (2009) Saltational evolution: hopeful monsters are here to stay. Theory Biosci 128:43–51

    Article  PubMed  Google Scholar 

  • Valasek P, Theis S, Krejci E, Grim M, Maina F, Shwartz Y et al (2010) Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. J Anat 216:482–488

    Article  PubMed  Google Scholar 

  • Valasek P, Theis S, DeLaurier A, Hinits Y, Luke GN, Otto AM et al (2011) Cellular and molecular investigations into the development of the pectoral girdle. Dev Biol 357:108–116

    Article  PubMed  CAS  Google Scholar 

  • Vallén E (1942) Beiträge zur Kenntnis der Ontogenie und der vergleichenden Anatomie des Schildkrötenpanzers. Acta Zool 23:1–127

    Article  Google Scholar 

  • Vasyutina E, Birchmeier C (2006) The development of migrating muscle precursor cells. Anat Embryol 211:S37–S41

    Google Scholar 

  • Vinagre T, Moncaut N, Carapuço M, Nóvoa A, Bom J, Mallo M (2010) Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell 18:655–661

    Article  PubMed  CAS  Google Scholar 

  • Vincent C, Bontoux M, Le Douarin NM, Pieau C, Monsoro-Burq AH (2003) Msx genes are expressed in the carapacial ridge of turtle shell: a study of the European pond turtle, Emys orbicularis. Dev Genes Evol 213:464–469

    Article  PubMed  Google Scholar 

  • Walker WF Jr (1947) The development of the shoulder region of the turtle, Chrysemys picta marginata, with special reference to the primary musculature. J Morphol 80:195–249

    Article  PubMed  Google Scholar 

  • Wang B, He L, Ehehalt F et al (2005) The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Dev Biol 287:11–18

    Article  PubMed  CAS  Google Scholar 

  • Watson DSM (1914) Eunotosaurus africanus Seeley and the ancestors of the Chelonia. Proc Zool Soc Lond 11:1011–1020

    Google Scholar 

  • Weidinger G, Thorpe CJ, Wuennenberg-Stapleton K, Ngai J, Moon RT (2005) The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/β-catenin signaling in mesoderm and neuroectoderm patterning. Curr Biol 15:489–500

    Article  PubMed  CAS  Google Scholar 

  • Winter B, Braun T, Arnold HH (1992) Co-operativity of functional domains in the muscle-specific transcription factor Myf-5. EMBO J 11:1843–1855

    PubMed  CAS  Google Scholar 

  • Yntema CL (1970) Extirpation experiments on the embryonic rudiments of the carapace of Chelydra serpentina. J Morphol 132:235–244

    Article  PubMed  CAS  Google Scholar 

  • Yoon JK, Olson EN, Arnold HH, Wold BJ (1997) Different MRF4 knockout alleles differentially disrupt Myf-5 expression: cis-regulatory interactions at the MRF4/Myf-5 locus. Dev Biol 188:349–362

    Article  PubMed  CAS  Google Scholar 

  • Zangerl R (1939) The homology of the shell elements in turtles. J Morphol 65:383–409

    Article  Google Scholar 

  • Zangerl R (1969) The turtle shell. In: Gans C, Bellairs Ad’A, Parsons TS (eds) The biology of the reptilia, vol 1. Academic Press, New York, pp 311–319

    Google Scholar 

  • Zhang W, Behringer RR, Olson EN (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev 9:1388–1399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. O. Rieppel for allowing us to cite his unpublished paper.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kuratani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagashima, H., Kuraku, S., Uchida, K. et al. Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anat Sci Int 87, 1–13 (2012). https://doi.org/10.1007/s12565-011-0121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-011-0121-y

Keywords

Navigation