Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs

  • Sébastien Canard
  • David Pointcheval
  • Quentin Santos
  • Jacques Traoré
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10892)

Abstract

Confidentiality requires to keep information away from the eyes of non-legitimate users, while practicality necessitates to make information usable for authorized users. The former issue is addressed with cryptography, and encryption schemes. The combination of both has been shown to be possible with advanced techniques that permit to perform computations on encrypted data. Searchable encryption concentrates on the problem of extracting specific information from a ciphertext.

In this paper, we focus on a concrete use-case where sensitive tokens (medical records) allow third parties to find matching properties (compatible organ donor) without revealing more information than necessary (contact information).

We reduce such case to the plaintext-equality problem. But in our particular application, the message-space is of limited size or, equivalently, the entropy of the plaintexts is small: public-key existing solutions are not fully satisfactory. We then propose a suitable security model, and give an instantiation with an appropriate security analysis.

Notes

Acknowledgments

This work was supported in part by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).

References

  1. [BBG05]
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015 (2005). http://eprint.iacr.org/2005/015Google Scholar
  2. [BBO06]
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. Cryptology ePrint Archive, Report 2006/186 (2006). http://eprint.iacr.org/2006/186
  3. [BDOP04]
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_30CrossRefGoogle Scholar
  4. [CFGL12]
    Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 332–348. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27954-6_21CrossRefGoogle Scholar
  5. [Cha82]
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York (1982)Google Scholar
  6. [FNP04]
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_1CrossRefGoogle Scholar
  7. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefGoogle Scholar
  8. [Jag12]
    Jager, T.: Black-Box Models of Computation. Vieweg+Teubner Verlag, Wiesbaden (2012)CrossRefGoogle Scholar
  9. [LZL13]
    Lu, Y., Zhang, R., Lin, D.: Stronger security model for public-key encryption with equality test. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 65–82. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36334-4_5CrossRefGoogle Scholar
  10. [Ped92]
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  11. [PS16]
    Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_7CrossRefGoogle Scholar
  12. [PS18]
    Pointcheval, D., Sanders, O.: Reassessing security of randomizable signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 319–338. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76953-0_17CrossRefGoogle Scholar
  13. [Sha79]
    Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–613 (1979)MathSciNetMATHGoogle Scholar
  14. [Sho97]
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_18CrossRefGoogle Scholar
  15. [SWP00]
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Computer Society Press, May 2000Google Scholar
  16. [YTHW10]
    Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11925-5_9CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sébastien Canard
    • 1
  • David Pointcheval
    • 2
    • 3
  • Quentin Santos
    • 1
    • 2
    • 3
  • Jacques Traoré
    • 1
  1. 1.Orange LabsApplied Crypto GroupCaenFrance
  2. 2.DIENS, CNRS École normale supérieurePSL UniversityParisFrance
  3. 3.INRIAParisFrance

Personalised recommendations