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Abstract. Confidentiality requires to keep information away from the
eyes of non-legitimate users, while practicality necessitates to make infor-
mation usable for authorized users. The former issue is addressed with
cryptography, and encryption schemes. The combination of both has
been shown to be possible with advanced techniques that permit to per-
form computations on encrypted data. Searchable encryption concen-
trates on the problem of extracting specific information from a cipher-
text.

In this paper, we focus on a concrete use-case where sensitive tokens
(medical records) allow third parties to find matching properties (com-
patible organ donor) without revealing more information than necessary
(contact information).

We reduce such case to the plaintext-equality problem. But in our par-
ticular application, the message-space is of limited size or, equivalently,
the entropy of the plaintexts is small: public-key existing solutions are
not fully satisfactory. We then propose a suitable security model, and
give an instantiation with an appropriate security analysis.

1 Introduction

With the advance of computing and networking, cryptography has evolved
from providing straightforward guarantees such as confidentiality, integrity and
authenticity to providing many complex features. In particular, much research
has been done on the task of performing various kinds of operations on encrypted
data. The most well-known topics include fully homomorphic encryption and
garbled circuits, whose practical realization would bring into the realm of possi-
bility many applications that would have deemed as magical and unlikely a few
decades ago.

A simpler but still useful problem is that of extracting information from
a ciphertext. This can include allowing the testing of a single bit of a cipher-
text, testing whether a ciphertext contains a particular value or not, whether it
includes this value as a substring or not. Searchable encryption already allows
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many practical uses, such as spam filtering or threat detection in encrypted traf-
fic, but has the advantage over more generic cryptocomputing techniques to have
much more efficient instantiations.

1.1 Motivation: Organ Donation

In this paper, we take the specific use case of organ donation as a motivation and
derive our constraints from issues related to the actual realization of a solution.
With this approach, we devise a method to solve the problem using a new kind
of cryptographic primitive. This work is connected to the Kidner Project1 which
aims at providing a solution for kidney donation matching using a blockchain.

Organ Donation. Organ transplant requires the donor and the recipient to
be compatible, so as to reduce the risks of a graft rejection. In practice, this
means that they must be of similar age, have compatible antigens (blood type
and human leukocyte antigen (HLA) system), etc. This also means that a list of
donors and a list of recipients must be maintained: when a new donor (respec-
tively recipient) enters the system, the new entry should be checked against
existing recipients (respectively donors).

Donors are usually willing to give an organ only to a close relative; this means
that the pool for potential matches is very restricted. To lift this constraint,
the common approach is to pair a willing donor with a recipient, disregarding
medical incompatibility. Then, the problem consists in finding two pairs that are
mutually compatible (the donor of a pair is compatible with the recipient of the
other pair), so that each donor accepts to give their organ to the other recipient.

To enlarge the pool of potential matches further, we can consider the directed
graph over donor-recipient pairs, and draw an edge from a donor to a compatible
recipient. The general problem is that of finding simple cycles in this graph; the
simplest version is a cycle of length 2, involving two donor-recipient pairs, but
longer cycles allow more compatibility solutions.

Confidential information on donors and recipients is usually managed by non-
profit entities (e.g., Organ Procurement Organizations) who exchange informa-
tion in order to find matching pairs. Optimizing the number of matches requires
merging information from as many sources as possible, but threatens the confi-
dentiality of patient records.

In this paper, we explore a method to encrypt such records in order to obtain
both data confidentiality and the ability to test for compatibility.

Compatibility Matching by Equality Check. We show how to reduce this
problem to that of testing for equality.

Blood Type. First, consider compatibility on blood type alone. Donor and recip-
ient can each be O, A, B or AB. The compatibilities are shown on Fig. 1. The
recipient will generate a record for each of the compatible donors: for instance,
1 https://www.kidner-project.com.

https://www.kidner-project.com
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a recipient of blood type A will generate a record whose field Blood Type is set
to O, and another where this field is set to A.

�
� �
� �
� � � �

Fig. 1. Blood compatibility

Remark 1. Records should not be linkable one to another; however, if they are,
the number of compatible blood types can be hidden by padding with filler
values. This can be done by constant incompatible values between donors and
receivers.

Age Group. Second, consider compatibility on age alone. This criterion is soft:
individuals of similar ages should match, but we do not want to discriminate
them into separate age groups. Instead, we use overlapping age groups by letting
the recipient list acceptable age groups for the donor. For instance, a 19-year-old
recipient would list age groups [12 − 19] and [20 − 39].

Human Leukocyte Antigens (HLA). Each individual is associated with six vari-
ables HLA-{A,B,C,E,F,G}. Two individuals are considered to be HLA-wise com-
patible when at least three of these variables match. This time, the recipient and
the donor each generate a record for each of the 20 combinations of three HLAs
(binomial of 3 out of 6).

All Together. By combining these brute-force-inspired solutions, we expect an
individual to generate on average less than 200 records. The overhead is non-
negligible but overcomes complex matching procedures.

We now consider an encrypted version of an individual’s record, called a
“fingerprint”, and we want to test whether two fingerprints are equal or not.

1.2 Related Work

Testing whether two ciphertexts hold the same value can be easily done in some
contexts. For instance, when all the relevant ciphertexts are encrypted under the
same key, and when a deterministic encryption scheme is used, it is sufficient to
compare the two outputs [BBO06]. It is also possible to allow testing a ciphertext
against a plaintext value by simply using deterministic public key encryption or
a one-way function (optionally along with a classical encryption of the message,
if decryption is needed).
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Public Key Encryption with Equality Test (PKEET) allows testing plaintext-
equality between two ciphertexts [YTHW10], while encryption can be done by
anyone. One may think of deterministic public key encryption schemes as a
subset of PKEET schemes.

In other contexts, more elaborate schemes are needed. In searchable encryp-
tion [SWP00,BDOP04], each word w from the input message m is encrypted
separately as s = PEKS(w). The PEKS scheme then allows other participants to
search for a keyword w′ in m simply by testing whether w = w′ given s, as well as
a trapdoor value Tw′ . Another variant allows testing between a ciphertext and a
plaintext, without a trapdoor [CFGL12]. In different settings, it is possible to use
interactive protocols, such as for private matching and set intersection [FNP04].

1.3 Our Contribution

Fingerprinting and Testing Keys. It is important to note that PKEETs
rely on the high min-entropy of the message distribution [LZL13]. Indeed, an
attacker may test a target ciphertext against arbitrary messages to conduct a
brute-force search over the message space, since encryption is public. We thus
have to exclude this approach.

We introduce the notion of fingerprint, a kind of probabilistic ciphertext
that allows plaintext-equality testing. Private fingerprinting (generation of fin-
gerprint) allows us to provide semantic security [GM84] (a.k.a. indistinguisha-
bility or polynomial security). Alternatively (or additionally), it is possible to
make the testing private. We consider all scenarios in our generic model but,
since legitimate users need to run many more plaintext-equality testings than
fingerprintings (contrary to an adversary), we are interested in a mechanism
where testing is public and fingerprinting is private.

Finally, we would prefer non-interactive matching protocols: in our motiva-
tion, searching for a cycle requires many compatibility tests; using an interactive
protocol would incur an important communication cost and make the system less
robust to network hazards.

Blind and Threshold Fingerprinting. We could entrust the fingerprinting
key to a trusted third party (TTP) to control the number of queries but we
want the fingerprints to be generated without seeing the input messages. Thus,
we will use blind fingerprinting, which is similar to blind signing [Cha82], but
we do not require unlinkability.

This is not enough for privacy: the fingerprinter can still generate and test
for plaintext-equality as many fingerprints as they want (assuming public-key
testing). To actually achieve a decent level of privacy, we therefore split them into
several fingerprinters: without collusions above some threshold, no information is
leaked about the input message (blindness) and no brute-force attack is possible.
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1.4 Organization

In Sect. 2, we first draw a generic model for fingerprinting under the constraints
listed above; in particular, we take into consideration both public and private
fingerprinting and both public and private testing. Then, in Sect. 3, we introduce
the two assumptions which our construction relies on, one of which is new to
this paper, and holds in the generic bilinear group model. Finally, we propose
a construction for our new scheme in Sect. 4, show its security, and present the
blind and threshold variants which extend the privacy of the user.

The proof for the new assumption in the generic bilinear group model is
postponed to AppendixA, and the proofs of security of our construction can be
found in Subsect. 4.3.

2 Fingerprinting Scheme

In this section, we first define a more general fingerprinting mechanism, where
the generation of fingerprints and the testing algorithm require keys that can
be either private or public. We will later focus on our concrete scenario, with
private fingerprint generation and public testing.

2.1 Description

We consider three kinds of players:

– the fingerprinter who generates the fingerprints of messages using the finger-
printing key. We consider this operation in the honest-but-curious framework,
since we eventually split the fingerprinter into several parties, each holding a
share of the fingerprinting key;

– the tester who checks whether two fingerprints correspond to the same mes-
sage or not, using the testing key;

– the users who have access to the list of fingerprints, and who may query
for new fingerprints (through the fingerprinter) and compare fingerprints
(through the tester).

We stress however that the fingerprinting and testing keys may be either public
or private. When a key is secret, the users have to interact with the owner of the
key to benefit from the corresponding functionality; when it is public, the users
can act on behalf of the fingerprinter or the tester. The choice of publishing a
key or keeping it private will depend on the scenario under consideration.

Finally, we eventually choose to take advantage of the asymmetric nature
of our use case: bipartite matching, between people from two different groups
(donors and receivers). So, we will manipulate two kinds of fingerprints: “left”
and “right” fingerprints in this generic specification.

We thus define four protocols:

– KeyGen(1k) creates the global parameters and the left and right fingerprinting
keys lk and rk as well as the testing key tk, for security parameter k;
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– LFingerprint(lk,m), given a left-fingerprinting key lk and a message m, outputs
a left-fingerprint fL;

– RFingerprint(rk,m), given a right-fingerprinting key rk and a message m, out-
puts a right-fingerprint fR;

– Test(tk, fL, fR), given a testing key tk, a left-fingerprint fL and a right-
fingerprint fR, reveals whether they correspond to the same message or not.

As already noted above, these procedures can be either private or public, and
they can be algorithms to be run offline, or interactive protocols. Various situa-
tions can be envisioned according to the secrecy of the fingerprinting and testing
keys.

– Testing and fingerprinting keys public: security solely rely on the high entropy
of the inputs (message-locked encryption, as in PKEETs);

– Fingerprinting keys private only: our use case, where we want to limit the
generation of fingerprints, but allow anyone to test freely for compatibility;

– Testing key private only: this can be relevant if the message space is very
constrained, when even a few tests could leak too much information;

– Testing and fingerprinting keys private: this has the highest security guaran-
tee, but is usually impractical unless performing very few queries is enough.

Remark 2. We can choose to have one of the fingerprinting keys private, and the
other public. This setup can give some flexibility for specific use cases.

2.2 Security Model

Let us now make more precise the security notions we want to achieve. Since
secret information can include the fingerprinting keys lk and rk, the testing key
tk, and the users’ input messages, we consider the following security properties:

1. unforgeability of fingerprinting (even against the tester2);
2. one-more indistinguishability of testing (even against the fingerprinter3);
3. privacy of the user w.r.t. the tester;
4. privacy of the user w.r.t. the fingerprinter.

Authentication of the Fingerprinter. The raison d’être of the fingerprinter is
to generate fingerprints, so unforgeability guarantees that no one else can do
so: even a collusion between the tester (access to the testing key) and users
(queries to the fingerprinter) should be unable to generate a valid fingerprint
that was not provided by the fingerprinter. This implies that the fingerprinting
key is not leaked during this game. We formally define Fingerprint-Unforgeability
(FP−UF).

2 Even the testing key should give no advantage to anybody in generating fingerprints.
3 Even the fingerprinting key should give no advantage to anybody in making tests.



268 S. Canard et al.

Definition 1 (FP–UF). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be
the scheme presented above, and let A be a polynomial-time adversary. Let

AdvFP−UF
Π,L (A) = Pr

(
(lk, rk, tk) $← KeyGen(1k), (m�, f�

L) ← AL(rk, tk),
fR ← RFingerprint(rk,m�) : Test(tk, f�

L, fR) = 1

)

where L refers to the left-fingerprinting oracle, which answers to queries on
message mi with fL,i = LFingerprint(lk,mi). We insist that m� is distinct from
any queried mi.

We similarly define AdvFP−UF
Π,R , with the left-fingerprinting key but access to

the right-fingerprinting oracle. We say that Π is (t, ε) − FP−UF-secure when
both AdvFP−UF

Π,L (A) ≤ ε and AdvFP−UF
Π,R (A) ≤ ε for any A running within time t.

Authentication of the Tester. The purpose of the tester is to help the user to
test plaintext equality between fingerprints. But even a collision between the
fingerprinter (access to the fingerprinting key) and users (queries to the tester),
should be unable to guess the result of another test. This implies that the testing
key is not leaked. We formally define Testing-Indistinguishability (T−IND).

Definition 2 (T–IND). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be
the scheme presented above, and A = (A1,A2) a polynomial-time adversary. Let

AdvT−IND
Π,L (A)=

∣∣∣∣∣∣∣∣∣∣
Pr

⎛
⎜⎜⎜⎜⎝

(lk, rk, tk) $← KeyGen(1k),

(m0,m1, s) ← AT
1 (lk, rk), fL ← LFingerprint(lk,m0),

b
$← {0, 1}, fR ← RFingerprint(rk,mb),

b′ ← AT
2 (s, fL, fR) : b′ = b

⎞
⎟⎟⎟⎟⎠ − 1

2

∣∣∣∣∣∣∣∣∣∣
where T refers to the testing oracle, who answers to queries on fingerprints
fL, fR with T (fL, fR) = Test(tk, fL, fR). We require that the attacker does not
submit the challenge fingerprint fR to the testing-oracle.

We define AdvT−IND
Π,R (A) in a similar fashion. We say that Π is (t, ε)−T−IND-

secure if both AdvT−IND
Π,L (A) ≤ ε and AdvT−IND

Π,R (A) ≤ ε for any adversary A
running within time t.

One can note that for such a strong notion of indistinguishability, which only
excludes the challenge fingerprints from being queried to the testing-oracle, the
fingerprints must be non-malleable.

Privacy of the User. This security notion adapts semantic security to our scheme:
given access to the even a collusion between the tester (access to the testing
key) and users (queries to the fingerprinter) should not be able to distinguish
a fingerprint of a message m0 from a fingerprint of a message m1 (unless they
know a fingerprint of m0 or of m1). Furthermore, the collusion could include
one of the two fingerprinting keys (but not both): give the left-fingerprinting
key when proving the semantic security of left-fingerprinting, and the right-
fingerprinting key when proving the semantic security of right-fingerprinting.
We formally define Fingerprint-Indistinguishability (FP−IND).
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Definition 3 (FP–IND). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be
the scheme presented above, and let A = (A1,A2) be a polynomial-time adver-
sary. Let

AdvFP−IND
Π,L (A)=

∣∣∣∣∣∣∣∣
Pr

⎛
⎜⎜⎝

(lk, rk, tk) $← KeyGen(1k), (m0,m1, s) ← AR
1 (lk, tk),

b
$← {0, 1}, fL ← LFingerprint(lk,mb),

b′ ← AR
2 (s, fL) : b′ = b

⎞
⎟⎟⎠− 1

2

∣∣∣∣∣∣∣∣
where R refers to the right-fingerprinting oracle, which answers to queries on
message m′

i with R(m′
i) = RFingerprint(rk,m′

i). We insist that m′
i /∈ {m0,m1}

for any queries to R.
We define AdvFP−IND

Π,R (A) similarly. We say that Π is (t, ε) −FP−IND-secure
if both AdvFP−IND

Π,L (A) ≤ ε and AdvFP−IND
Π,R (A) ≤ ε for any adversary A running

within time t.

Note that fingerprinting generation itself should not reveal anything about
the message that is being fingerprinted: the view of the fingerprinter should be
the same regardless of the message. Like in blind signatures [Cha82], no adver-
sary playing the role of fingerprinter should be able to distinguish a fingerprinting
of m0 from a fingerprinting of m1. However, if the fingerprinter sees the resulting
fingerprint and locally generates a fingerprint for m0, they could easily distin-
guish between the two cases. To avoid this, the fingerprinter should be split
into several parties that need to cooperate to create a new fingerprint. This last
security notion thus suggest the use of a blind protocol and a threshold scheme.

Remark 3. Contrary to blind signatures, user anonymity is not required; in our
use-case, contact information must be joined with the final published fingerprint.

3 Assumptions

Our construction adapts the randomizable signature proposed by Pointcheval
and Sanders [PS16], which relies on q-MSDH-1 [PS18]. Our scheme addition-
ally requires indistinguishability, which implies another assumption; for this, we
introduce q-DMSDH-1, which is decisional variant of q-MSDH-1, and prove it to
hold in the generic bilinear group model.

Definition 4 (q-MSDH-1). Let (p, G1, G2, GT , e) be a bilinear group setting
of type 3, with g (respectively g̃) a generator of G1 (respectively G2). Given
(gxi

, g̃xi

)0≤i≤q along with (ga, g̃a, g̃a·x) for a, x
$← Z

∗
p, no adversary can output

a tuple (w,P, h
1

x+w , h
a

P (x) ) for some h ∈ G
∗
1 where P is a polynomial of degree

at most q and w is a scalar such that (X + w) and P (X) are relatively prime.

Definition 5 (q-DMSDH-1). Let (p, G1, G2, GT , e) be a bilinear group setting
of type 3, with g (respectively g̃) a generator of G1 (respectively G2). Given
(gxi

, g̃xi

)0≤i<q along with (ga, ga·x, g̃a) for a, x
$← Z

∗
p, and for any (w,P ) where
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P is a polynomial of degree at most q and w is a scalar such that (X + w) and
P (X) are relatively prime, no adversary can distinguish (h

1
x+w , h

a
P (x) ) for some

h ∈ G
∗
1 from a random pair of elements of G1.

Theorem 1. q-DMSDH-1 holds in the generic bilinear group model.

Proof. The computational assumption q-MSDH-1 from [PS18] gives g̃a·x ∈ G2

and expects the forged pair in G1, whereas the decisional version q-DMSDH-1
gives ga·x ∈ G1 and the challenge pair in G1. So, the group the pair belongs
to determines what security guarantee we obtain (either unforgeability from
q-MSDH-1 or indistinguishability from q-DMSDH-1). Thus, the reasoning for q-
DMSDH-1 is very similar to that for q-MSDH-1. The full proof can be found in
AppendixA.

4 Fingerprinting from Pointcheval-Sanders Signatures

In the following, we focus on our initial scenario with secret fingerprinting and
public testing of plaintext-equality, for low-entropy messages. Our construction
is heavily influenced by the assumption that it is possible to efficiently enumerate
all the valid messages.

4.1 The Pointcheval-Sanders Signature Scheme

Our construction derives from Pointcheval-Sanders signatures [PS16,PS18]. We
reproduce here the definition for the single-message version. Let e : G1 × G2 →
GT be a type-3 pairing with G1, G2, GT of prime order p, and G

∗
1 = G1\{1G1}.

Then, we define the following procedures.

– KeyGen(1k): (g̃, x, y) $← G2 × Z
2
p, sk = (x, y) and pk = (g̃, X̃ = g̃x, Ỹ = g̃y).

– Sign(sk,m): draw h
$← G

∗
1 and return σ = (h, hx+ym).

– Verify(pk,m, σ): return 1 if σ1 �= 1G1 and e(σ1, X̃Ỹ m) = e(σ2, g̃), else 0.

This signature scheme has been shown unforgeable in the sense of EUF–CMA
under the interactive PS assumption [PS16], and in the sense of EUF–wCMA
(non-adaptative) under the q-MSDH-1 assumption (where q is the bound on
signing requests asked before the setup) [PS18]. The same levels of security are
achieved when elements g ∈ G1 and Y = gy are included in the public key pk,
as long as X = gx is kept private.

4.2 Fingerprinting Scheme with Public Plaintext-Equality Testing

Let H be a random oracle. We now propose a fingerprinting scheme where the
fingerprinting procedure requires a secret key lk or rk, while testing is a public
process (there is no testing key tk, or alternatively it is public).

– KeyGen(1k): randomly draw (g, g̃, x, y) $← G1 × G2 × Z
2
p, set (X, X̃, Y, Ỹ ) ←

(gx, g̃x, gy, g̃y), return lk = X, rk = X̃, and pk = (g, Y, g̃, Ỹ ).



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 271

– LFingerprint(lk,m): draw u
$← Z

∗
p, return fL = (gu, (XY H(m))

u
).

– RFingerprint(rk,m): draw u
$← Z

∗
p, return fR = (g̃u, (X̃Ỹ H(m))

u
).

– Test(fL, fR): return 1 if fL,1, fR,1 �= 1G1 and e(fL,1, fR,2) = e(fL,2, fR,1),
else 0.

4.3 Security of the Basic Scheme

Theorem 2. Our fingerprinting scheme is FP−UF under q-MSDH-1 in the ran-
dom oracle model, where q corresponds to the number of queries to the random
oracle or to the fingerprinting oracles.

Proof. We define the extended Pointcheval-Sanders signature scheme (EPS) as a
variant of the PS signature scheme where pk includes Y , i.e. pk = (Y, g̃, X̃, Ỹ ). We
argue that EPS is EUF–wCMA secure under q-MSDH-1 in Lemma 1, and reduce
the FP−UF security of our fingerprinting scheme to the EUF–wCMA security of
EPS in Lemma 2.

Lemma 1. If q-MSDH-1 holds, then EPS is EUF–wCMA where q is the number
of queries to the signing oracle.

Proof. We refer to the proof of theorem 10 from [PS18, Sect. 5.1, p. 330] where
the challenger is given (gxi

)i, (g̃xi

)i and (ga, g̃a, g̃a·x) and feeds the challenger
with Ỹ1 ← g̃a and Ỹi ← Ỹ ui

1 . To prove the EUF–wCMA security of the signature
scheme when pk includes (Yi)i, it suffices to have the challenger also offer Y1 ← ga

and Yi ← Y ui
1 .

Lemma 2. If EPS is EUF–wCMA, then our fingerprinting scheme is FP−UF.
The number of queries to the signing oracle in EPS maps to the number of
queries to the random oracle or to the fingerprinting oracles in our scheme.

Proof. Let A be an adversary that breaks the FP−UF security of our scheme.
Then, we create an adversary B that breaks the EUF–wCMA security of EPS.
By symmetry of the left and right games, we assume that AdvFP−IND

Π,L (A) is non-
negligible without loss of generality.

We will use H to “redirect” the queries from A towards predetermined values:
B first draws (mi)i

$← Z
q
p, submits the list of messages (mi)i to the signing

challenger, and will answer to the i-th original query to H (for some message
Mi) with mi.

In return, our adversary B is given pk = (Y, g̃, X̃, Ỹ ) as well as signatures
(σi)i for (mi)i, i.e. values such that e(σi,1, X̃Ỹ mi) = e(σi,2, g̃) We need to output
(m�, σ�) such that e(σ�

1 , X̃Ỹ m�

) = e(σ�
2 , g̃) where m� is distinct from any queried

mi.
For this, we simulate the FP−UF game for A with pk′ ← (g, Y, g̃, Ỹ ), rk ← X̃

as well as access to an oracle L which answer to queries Mi with σi. Then,
A should output (M�, f�

L) where M� is distinct from any queried Mi. We also
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require that Test(tk, f�
L, fR) for some fR ← RFingerprint(rk,m�) = 1, i.e. such

that fL,1 �= 1G1 and:

e
(
fL,1,

(
X̃Ỹ H(M�)

)u)
= e (fL,2, g̃

u)

for some u. Thus, σ� = f�
L is a valid PS signature for m� = H(M�) with m�

distinct from any queried mi.

Theorem 3. Our fingerprinting scheme is FP−IND under q-DMSDH-1 in the
random oracle model, where q corresponds to the number of queries to the random
oracle or to the fingerprinting oracles.

Proof. Let A be an adversary against FP−IND, then we provide an adver-
sary B against q-DMSDH-1. We assume that AdvFP−IND

Π,L (A) is non-negligible.
Since the roles of G1 and G2 are symmetric, the same reasoning applies when
AdvFP−IND

Π,R (A).
First, B is given (gxi

)0≤i≤q, (ga, ga·x, g̃a). Then, it draws (mi)i
$← Z

q
p, m

$←
Zp, sets P =

∏
i(X + mi), and submits (m,P ) to the challenger, which answers

with a pair σ which is either random or of the form (h
1

x+m , h
a

P (x) ) for some
h ∈ G1.

Now, B should be able to distinguish between these two cases. For this, B
will run A while simulating the game for FP−IND by setting g′ ← g

∏
i(x+mi)

and g̃′ ← g̃
∏

i(x+mi), using (gxi

)i and (g̃xi

)i, as well as X ← ga·x, Y ← ga, and
Ỹ ← g̃a to define the public key pk = (g′, Y, g̃′, Ỹ ) and the left-fingerprinting
key lk = X. This implicitly sets x′ = a·x∏

i(x+mi)
and y′ = a∏

i(x+mi)
.

To generate fingerprints for the q queried fingerprints, B sets the random
oracle H to map the j-th original query Mj to mj , and the right-fingerprinting

oracle R to return ((g̃′
∏

i�=j(x+mi))
uj

, (g̃′a)
uj

). One may verify that this is a valid
right-fingerprint for Mj .

Finally, A outputs (M ′
0,M

′
1), and B draws b ← {0, 1}. We would now like

to set H(M ′
b) to m, but A may have queried the random oracle on this value

before. Thus, on any query Mj , H will additionally guess with probability 1
q that

Mj = M ′
b and accordingly set H(Mj) to m instead of mj . B can then check

its guess when A outputs (M ′
0,M

′
1), and abort if it was incorrect; this implies a

penalty of a factor q to the probability that B wins the q-DMSDH-1 game.
Now, since H(M ′

b) = m, if σ is of the form (h
1

x+m , h
a

P (x) ), then it is a valid
left-fingerprint for Mb. Otherwise, it provides no information about b to the
adversary. Thus, B answers the final request of A with σ, and, if A guesses b

correctly, then B guesses that σ is of the form (h
1

x+m , h
a

P (x) ); otherwise, that it
is a random pair.

4.4 Improving the Privacy of the User

Since the left and right fingerprintings work in similar ways, we will only present
the protocols for left fingerprinting.
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Against the Fingerprinter Without the Final Fingerprint. In the naive
construction above, the user sends the message in the clear to get back the
fingerprint. In order to extend user privacy to the fingerprinters, we propose a
blinded version, as in [PS16]:

1. the user draws r
$← Zp and sends C ← Y mgr;

2. the user runs a Zero-Knowledge Proof of Knowledge (ZKPoK) of m, r such
that C = Y mgr;

3. the fingerprinter draws u
$← Zp and sends back α ← (gu, (XC)u);

4. the user sets f1 ← α1, f2 ← α2 · α−r
1 .

This protocol is perfectly blind to the fingerprinter, since his view is just the
perfectly hiding Pedersen commitment [Ped92] and a ZK protocol, which do not
leak any information about m. Hence the privacy of the user. With an extractable
ZKPoK, it is possible to prove the security of this blinded version, as in [PS16].

Against the Fingerprinter with the Final Fingerprint. With the protocol
presented above, if the fingerprinter gains access to the final fingerprint f , their
ability to create fingerprints for arbitrary messages and the publicness of the
testing key let them retrieve the message. In order to block exhaustive searches,
we amend the protocol by splitting the fingerprinter into n parties, using secret
sharing of the fingerprinting key. For some threshold k, no collusion of less than
k parties can generate fingerprints; equivalently, having access to up to k − 1
shares of the fingerprinting key does not reveal more than being a common user.

The threshold version makes use of Shamir’s secret sharing [Sha79] to split
the secret scalar x into n shares xi (for each sub-fingerprinter Fi), and we note
Xi = gxi . This way, for any qualified subset of Fi (with at least k shares), there
are public coefficients λi (Lagrange coefficients) such that x =

∑
λixi, and then∏

Xλi
i = X. A group of k sub-fingerprinters interacts as follows with the user:

1. the user draws r
$← Zp and broadcasts C ← Y mgr;

2. the user sends a NIZKPoK of m, r such that C = Y mgr;
3. each Fi draws ui

$← Zp and broadcasts αi,1 ← gui ;
4. each Fi computes G ←

∏
α

λj

j,1, and sends back αi,2 ← GxiCui ;
5. the user sets

f1 ← G = gu f2 ← G−r
∏

αλi
i,2 = (XY m)u

which implicitly defines u =
∑

λiui.
First, one can easily see that this still preserves the privacy of the user, since,

as before, C does not contain any information about m; neither does the NIZK.
The final fingerprint f traces back to the user but the anonymity is not required:
in our use case, it must be possible to contact the appropriate hospital when a
match is found. The important property is the privacy of m: no subset of less
than k sub-fingerprinters can guess the conduct an exhaustive search.

Of course, we have to prove this still preserves fingerprinter privacy, or more
precisely this does not leak private information of honest sub-fingerprinters to
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corrupted ones. To this aim, we show that the view of any (static) subset of
corrupted sub-fingerprinters can be simulated from the same information α =
(α1, α2) as the one output by the fingerprinter in the centralized protocol.

Let us assume that the corrupted sub-fingerprinters are F1, . . . ,Fc, and the
honest ones are Fc+1, . . . ,Fk (where c < k), and the simulator has drawn vi

$← Zp

for i = c + 1, . . . , k: the corrupted players send αi,1 for i = 1, . . . , c, and the
simulator draws ui

$← Zp and generates αi,1 ← gui for i = c+ 1, . . . , k − 1, while

αk,1 ← (α1/
∏k−1

i=1 αλi
i,1)

1/λk

. The simulator also sets G ← α1, and computes

αi,2 ← GviCui for i = c + 1, . . . , k − 1, while αk,2 ← (α2/
∏k−1

i=1 αλi
i,2)

1/λk

.
Since no information is known about the actual secret values xi, and the val-

ues vi are indistinguishable from the real secret, all the simulated elements are
perfectly indistinguishable from a real execution, under the condition that the
corrupted sub-fingerprinters are honest-but-curious (and the subset of honest
players remains the same: static corruptions). Indeed, in this protocol, no ver-
ifiability is required about the sub-fingerprinters: they are trusted to compute
correctly, even if they try to learn more information.

4.5 Verifiability

If one wants to consider malicious sub-fingerprinters, verifiability is required
for the user (private verifiability). An additional improvement can be reached:
one could avoid fake or copies of fingerprints posted by malicious users in the
database, by using a proof of knowledge of the fingerprinted message (public ver-
ifiability). To achieve this, sub-fingerprinters first need to publish a commitment
Ci = gxiY ti of their secret shares xi during key generation. This is a perfectly
hiding commitment, and the binding property relies on secrecy of the discrete
logarithm of Y in basis g.

Private Verifiability. For the former case, verifiability can be enforced during
the original process of creating the fingerprint, with the additional verification
of a NIZK Proof of Existence of ui and a NIZK Proof of Knowledge of xi and ti
such that αi,1 = gui and αi,2 = GxiCui . The proofs can be efficiently done with
Schnorr-like proofs.

Public Verifiability. In order to avoid fake fingerprints or copies, the user
should prove their validity (to avoid fake ones) and freshness (to avoid copies).
A non-malleable NIZK could solve this challenge: in addition to f = (f1, f2),
and the NIZKs provided by the sub-fingerprinters, the user sends a NIZK Proof
of Knowledge of m and r such that α2/f2 = αr

1 and C = Y mgr. In order to
guarantee non-malleability or replay attacks, the user includes his own identity
in the challenge computation (signature of knowledge).
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4.6 Full Protocol

Let us now fully describe the resulting protocol, with an optimized NIZK for
the public verifiability: the fingerprinters Fi, for i = 1, . . . , n, jointly generate a
Shamir’s secret sharing of a random scalar secret x. They each own a share xi,
and publish a commitment Ci = gxiY ti , for a random scalar ti. In order to get
a fingerprint on a message m, the user (with identity Id) contacts a subset of k
sub-fingerprinters:

1. the user draws r
$← Zp and broadcasts C ← Y mgr;

2. the user sends an (extractable) NIZKPoK of m, r such that C = Y mgr;
3. each Fi draws ui

$← Zp and sends back αi,1 ← gui ;
4. each Fi computes G ←

∏
α

λj

j,1, and sends back αi,2 ← GxiCui ;
5. each Fi starts a NIZK for ui, xi and ti such that

αi,1 = gui αi,2 = GxiCui .

More precisely, it draws u′
i, x

′
i, t

′
i

$← Zp and sends

Ai,1 = gu′
i Ai,2 = Gx′

iCu′
i ;

6. the user generates

α1 ← G =
∏

αλi
i,1 = gu α2 ←

∏
αλi

i,2 = (XC)u

A1 ←
∏

Aλi
i,1 = gu′

A2 ←
∏

Aλi
i,2 = (XC)u′

,

where u =
∑

λiui and u′ =
∑

λiu
′
i, as well as

f1 ← α1 f2 ← G−rα2

and starts the NIZK for m and r such that α2/f2 = αr
1 and C = Y mgr, with

random r′ and m′:

B1 ← αr′
1 B2 ← Y m′

gr′

and publishes the challenge e = H(Id, C, f1, f2, A1, A2, B1, B2);
7. each Fi completes the NIZK with

u′′
i ← u′

i − eui x′′
i ← x′

i − exi

8. the user sets

u′′ ←
∑

λiu
′′
i x′′ ←

∑
λix

′′
i

which satisfy

gu′′
= A1α

−e
1 Gx′′

Cu′′
= A2α

−e
2

and completes his NIZK with

m′′ ← m′ − em r′′ ← r′ − er

which satisfy

αr′′
1 = B1(α2/f2)−e Y m′′

gr′′
= B2C

−e.
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The final fingerprint f = (f1, f2) is published along with the intermediate values
(α2, C), the challenge e and the exponents (u′′, x′′,m′′, r′′), which constitute a
proof that can be verified by checking that e = H(Id, C, f1, f2, A1, A2, B1, B2),
where the missing elements can be recomputed as

A1 ← gu′′
fe
1 A2 ← fx′′

1 Cu′′
αe
2

B1 ← fr′′
1 (α2/f2)e B2 ← Y m′′

gr′′
Ce

This is just an optimization of the Fiat-Shamir heuristic of Schnorr-like proofs.

5 Conclusion

With this construction, we are able to propose a new kind of scheme that let
us derive testable, privacy-preserving, fingerprints from arbitrary messages. This
allows us to propose a solution to the initial motivation of organ donation, where
the requirement of encrypting low-entropy messages in such a way that they
could be publicly tested against each other seemed to imply highly-interactive
protocols. In contrast, our construction allows plaintext-equality tests between
fingerprints to be performed fully offline, while only their generation requires
an interactive process, to guarantee some level of confidentiality despite the low
min-entropy.

We hope that this solution will prove useful in practical applications and
allow cryptography to be used in more numerous situations. It might also be
feasible to design systems which requires fewer interactions, or rely on more
mainstream assumptions.

Acknowledgments. This work was supported in part by the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-
2013 Grant Agreement no. 339563 – CryptoCloud).

A Proof of Theorem1

Proof. We prove q-DMSDH-1 in the generic bilinear group model. The generic
group model (not bilinear) was used by Victor Shoup in [Sho97] to assess more
tightly the difficulty of computing the discrete logarithm and related problems. A
vastly clarified introduction to this technique can be found in [Jag12]. The generic
bilinear group model is presented in appendix A of [BBG05]. It is essentially a
formal way to enumerate the values that an adversary can compute from a
restricted number of inputs, using only the group laws.

We use the classical approach of simulating group operations by an oracle G,
which operates on arbitrary representations (ξi,1)i, (ξi,2)i, (ξT,i)i of the elements
of G1, G2 and G3 (respectively). The oracle is built such that all interactions are
done without relation to the secret values, hence reducing the attack to a guess.
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For instance, G(×, ξi,1, ξ1,j) returns a representation of the product of the
underlying values in G1. The oracle G similarly allows the adversary A to com-
pute products in G2 and GT , evaluate the pairing e, and test two representations
for the equality of the underlying values.

To simulate the operations, the oracle G stores the values known to the
adversary A (at beginning, and following a request) into lists L1, L2 and LT

(for each group). To track how the adversary A obtained these values, we save
with each representation ξ�,i a polynomial p�,i corresponding to the operations
used to compute the value. The representations used are not important, and the
reader must simply remember that a new random representation is generated
for each new computed value; testing whether the value is fresh or not is done
by searching the polynomial in the relevant list L1, L2 or LT .

The values initially provided to the adversary A are:

– in G1: (gxi

)0≤i≤q, ga, ga·x, h
1

x+w , h
a

P (x)

– in G2: (g̃xi

)0≤i≤q, g̃a

To simulate operations over these elements, we set r such that h = gr

and introduce the indeterminate values x̄, ā, r̄. Then, we initialize L1 =
{x̄i}i ∪ {ā, āx̄, r̄

x̄+w , ā·r̄
P (x̄)}, L2 = {x̄i}i ∪ {ā} and LT = ∅ (along with arbitrary

representations), and set:

– G(×, ξ�,i, ξ�,j): append p�,i + p�,j to L�
– G(=, ξ�,i, ξ�,j): return whether p�,i = p�,j

– G(e, ξ1,i, ξ2,j): append p1,i × p2,j to LT

Remark 4. Comparing the representations directly is equivalent to calling the
group oracle for testing, because the representations are generated so as to be
equal when the corresponding polynomials are equal

We now have to show two things: the simulation does not allow the adversary
to distinguish between (h

1
x+w , h

a
P (x) ) and a pair of random elements from G1;

the simulation is indistinguishable from the initial game.

Indistinguishability in Simulation. Since representations are opaque, the
adversary can only obtain information from testing two values for equality (either
of representations or through the group oracle G).

Comparing elements of G1. Consider a comparison of ξ1,i to ξ1,j ; the differ-
ence of their polynomials, p1,i − p1,j , is of the form:

∑
i

(
C(i)

x x̄i + Caā + Caxāx̄ + C1
r̄

x̄ + w
+ C2

ā · r̄

P (x̄)

)

as a polynomial in r̄, the linear term implies that, if this polynomial were equal
to zero, then:

C1P (x̄) + C2ā(x̄ + w) = 0
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as a polynomial in ā, this implies C1 = C2 = 0. Thus, the polynomial does not
depend on the challenge pair.

Comparing elements of G2. Elements in G2 do not depend on the challenge
pair.

Comparing elements of GT . Since LT starts out empty, a comparison of ξT,i

to ξT, j will correspond to polynomials whose difference pT,i − pT,j is the sum
of products of one element from G1 and one element from G2, thus of the form:

∑
i

(
Q(x̄) + Ci,aā + Ci,axāx̄ + Ci,1

r̄

x̄ + w
+ Ci,2

ā · r̄
P (x̄)

)
×

(
R(x̄) + C̃i,aā

)

where Q and R are polynomials of degrees at most q. As a polynomial in r̄, if
this were the zero polynomial, then the linear term would imply that:

∑
i

(
Ci,1P (x̄) + Ci,2ā(x̄ + w)

)
×

(
R(x̄) + C̃i,aā

)
= 0

as a polynomial in ā, then the linear term would imply that:

∑
i

(
Ci,1P (x̄)C̃i,a + Ci,2(x̄ + w)R(x̄)

)
= 0

that is, CP (x̄) + S(x̄)(x̄ + w) = 0 for C a constant and S a polynomial. Since
P (x̄) and (x̄ + w) are relatively prime, this means that C = 0 and S = 0 and
thus that the original equation does not depend on the challenge pair.

Undistinguishability of Simulation. Let qG be the number of queries to the
group oracle G. The simulation is undistinguishable from the original game unless
the adversary assembles two distinct polynomials (p, q) with (p − q)(x, a, r) = 0.

The adversary can adaptively test whether (x, a, r) is a root of one of the at
most q′ = (5 + 2q + qG)2/2 differences of polynomials of degrees at most d = 2q.
Per the Schwartz-Zippel lemma, which states that a multivariate polynomial
of degree d has at most d roots, this is equivalent to testing whether (x, a, r)
pertains to one of q′ subsets of Z

3
p of sizes at most d. Finally, the probability of

adaptively finding such subsets is bounded above by q′·d
p3 , which is negligible.
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