Skip to main content

The History and Radiobiology of Hypofractionation

  • Chapter
  • First Online:
Hypofractionated and Stereotactic Radiation Therapy
  • 1210 Accesses

Abstract

The use of hypofractionation in radiation therapy dates back to the first third of the twentieth century, but was largely abandoned thereafter due to unacceptable normal tissue complications. In recent years however, it has been “repurposed” thanks to more than a century of advances in physics and imaging that now allow most normal tissues to be excluded from the radiation field. Advances in clinical radiobiology—in particular an improved understanding of the differing fractionation sensitivities of normal tissues and tumors—have also contributed to hypofractionation’s return. The biology of hypofractionation is controversial however, not only in terms of hypofractionation’s mechanism(s) of action, but also the appropriateness of using isoeffect models that were developed with conventional and hyperfractionated radiotherapy in mind. The possible roles vascular injury, microimmune effects and volume effects play in hypofractionation’s efficacy remain unclear, so some have questioned the continued use of conventional isoeffect formulae, based largely on the 5Rs of radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roentgen WC. Uber eine neue Art von Strahlen. SitzungsberPhysik-Med Ges Wuerzburg. 1895;137:132–41.

    Google Scholar 

  2. Becquerel H. Emission of the new radiations by metallic uranium. C R Acad Sci. 1896;122:1086–8.

    Google Scholar 

  3. Curie P, Curie MS. Sur une substance nouvelle radioactive, contenue dans la pechblende. C R Acad Sci. 1898;127:175–8.

    Google Scholar 

  4. Stenbeck T. Ein Fall von Hautkrebs geheilt durch Rontgenbestrahlung. Mitteil Grenzgeb Med Chir. 1900;6:347–9.

    Google Scholar 

  5. Kogelnik HD. The history and evolution of radiotherapy and radiation oncology in Austria. Int J Radiat Oncol Biol Phys. 1996;35:219–26.

    Article  PubMed  CAS  Google Scholar 

  6. Leszczynski K, Boyko S. On the controversies surrounding the origins of radiation therapy. Radiother Oncol. 1997;42:213–7.

    Article  PubMed  CAS  Google Scholar 

  7. Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4:737–47.

    Article  PubMed  CAS  Google Scholar 

  8. Kaplan HS. Present status of radiation therapy of cancer: an overview. In: Becker FF, editor. Cancer 6: a comprehensive treatise. New York: Plenum Press; 1977. p. 1–34.

    Google Scholar 

  9. Thames HD, Hendry JH. Fractionation in radiotherapy. Philadelphia: Taylor and Francis; 1987.

    Google Scholar 

  10. Bergonié J, Tribondeau L. Interpretation de quelques resultats de la radiotherapie. C R Acad Sci. 1906;143:983–8.

    Google Scholar 

  11. Regaud C. The influence of the duration of irradiation on the changes produced in the testicle by radium (Translated). Int J Radiat Oncol Biol Phys. 1977;2:565–7.

    Article  PubMed  CAS  Google Scholar 

  12. Regaud C, Ferroux R. Discordance des effets de rayons X, d’une part dans le testicule, par le peau, d’autre part dans la fractionnement de la dose. C R Soc Biol. 1927;97:431–4.

    Google Scholar 

  13. Coutard H. Roentgen therapy of epitheliomas of the tonsillar region, hypopharynx and larynx from 1920 to 1926. Am J Roentgenol. 1932;28:313–31.

    Google Scholar 

  14. Coutard H. Present conception of treatment of cancer of the larynx. Radiology. 1940;34:136–45.

    Article  Google Scholar 

  15. Reisner A. Untersuchungen uber die veranderungen der Hauttoleranz bei verschiedener Unterterlung. Strahlentherapie. 1930;37:779–87.

    Google Scholar 

  16. Quimby E, MacComb WS. Further studies on the rate of recovery of human skin from the effects of roentgen or gamma rays. Radiology. 1937;29:305–12.

    Article  Google Scholar 

  17. Paterson R. The value of assessing and prescribing dosage in radiation therapy in simple terms. Radiology. 1939;32:221–7.

    Article  Google Scholar 

  18. Ellis F. Tolerance dose in radiotherapy with 200 keV X-rays. Br J Radiol. 1942;15:348–50.

    Article  Google Scholar 

  19. Strandqvist M. Studien uber die kumulative Wirkung der Roentgenstrahlen bei Fraktionierung. Acta Radiol Suppl. 1944;55:1–300.

    Google Scholar 

  20. Fletcher GH. Keynote address: the scientific basis of the present and future practice of clinical radiotherapy. Int J Radiat Oncol Biol Phys. 1983;9:1073–82.

    Article  PubMed  CAS  Google Scholar 

  21. Ellis F. Relationship of biological effect to dose-time-fractionation factors in radiotherapy. In: Ebert M, Howard M, editors. Current topics in radiation research. Amsterdam: North Holland Publishing; 1968. p. 357–97.

    Google Scholar 

  22. Ellis F. Dose, time and fractionation: a clinical hypothesis. Clin Radiol. 1969;20:1–8.

    Article  PubMed  CAS  Google Scholar 

  23. Fowler JF, Stern BE. Dose-time relationships in radiotherapy and the validity of cell survival curve models. Br J Radiol. 1963;36:163–73.

    Article  PubMed  CAS  Google Scholar 

  24. Fowler JF, Morgan RL, Silvester JA, et al. Experiments with fractionated X-ray treatment of the skin of pigs. I. Fractionation up to 28 days. Br J Radiol. 1963;36:188–96.

    Article  PubMed  CAS  Google Scholar 

  25. Orton CG, Ellis F. A simplification in the use of the NSD concept in practical radiotherapy. Br J Radiol. 1973;46:529–37.

    Article  PubMed  CAS  Google Scholar 

  26. Bentzen SM. Estimation of radiobiological parameters from clinical data. In: Hagen U, Jung H, Streffer C, editors. Radiation research 1895–1995: volume 2, congress lectures. Wurzburg: Universitatsdruckerei H. Sturtz AG; 1995. p. 833–8.

    Google Scholar 

  27. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Palcic B, Skarsgard LD. Reduced oxygen enhancement ratio at low doses of ionizing radiation. Radiat Res. 1984;100:328–39.

    Article  PubMed  CAS  Google Scholar 

  29. Fowler JF, Morgan RL, Wood CAP. Pretherapeutic experiments with the fast neutron beam from the Medical Research Council cyclotron. I. The biological and physical advantages and problems of neutron therapy. Br J Radiol. 1963;36:163–73.

    Article  PubMed  CAS  Google Scholar 

  30. Withers HR. The four R’s of radiotherapy. In: Adler H, Lett JT, Zelle M, editors. Advances in radiation biology, vol. 5. New York: Academic Press; 1975. p. 241–71.

    Google Scholar 

  31. Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56:1045–8.

    Article  PubMed  CAS  Google Scholar 

  32. Elkind MM, Sutton H. X-ray damage and recovery in mammalian cells. Nature. 1959;184:1293–11295.

    Article  PubMed  CAS  Google Scholar 

  33. Bedford JS, Mitchell JB, Fox MH. Variations in responses of several mammalian cell lines to low dose-rate irradiation. In: Meyn RE, Withers HR, editors. Radiation biology in cancer research. New York: Raven Press; 1980. p. 251–62.

    Google Scholar 

  34. Zeman EM, Bedford JS. Dose-rate effects in mammalian cells: V. Dose fractionation effects in noncycling C3H 10T1/2 cells. Int J Radiat Oncol Biol Phys. 1984;10:2089–98.

    Article  PubMed  CAS  Google Scholar 

  35. Denekamp J. Changes in the rate of proliferation in normal tissues after irradiation. In: Nygaard O, Adler HI, Sinclair WK, editors. Radiation research: biomedical, chemical and physical perspectives. New York: Academic Press, Inc.; 1975. p. 810–25.

    Chapter  Google Scholar 

  36. Steel GG. The heyday of cell population kinetics: insights from the 1960’s and 1970’s. Semin Radiat Oncol. 1993;3:78–83.

    Article  PubMed  CAS  Google Scholar 

  37. Alper T, Howard-Flanders P. The role of oxygen in modifying the radiosensitivity of E. coli B. Nature. 1956;178:978–9.

    Article  PubMed  CAS  Google Scholar 

  38. Kallman RF. The phenomenon of reoxygenation and its implications for fractionated radiotherapy. Radiology. 1972;105:135–42.

    Article  PubMed  CAS  Google Scholar 

  39. Brown JM. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechnaism of reoxygenation. Br J Radiol. 1979;52:650–6.

    Article  PubMed  CAS  Google Scholar 

  40. Chaplin DJ, Durand RE, Olive PL. Acute hypoxia in tumors: implication for modifiers of radiation effects. Int J Radiat Oncol Biol Phys. 1986;12:1279–82.

    Article  PubMed  CAS  Google Scholar 

  41. Dewhirst MW. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat Res. 2009;172:653–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Douglas BG, Fowler JF. The effect of multiple small doses of X-rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66:401–26.

    Article  PubMed  CAS  Google Scholar 

  43. Joiner M, Van Der Kogel A. Basic clinical radiobiology. 4th ed. London: Hodder Arnold; 2009.

    Google Scholar 

  44. Thames HD, Withers HR, Peters LJ, et al. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys. 1982;8:219–26.

    Article  PubMed  Google Scholar 

  45. Withers HR, Thames HD, Peters LJ. Differences in the fractionation response of acutely and late-responding tissues. In: Karcher KH, Kogelnik HD, Reinartz G, editors. Progress in radio oncology II. New York: Raven Press; 1982. p. 287–96.

    Google Scholar 

  46. Withers HR, Thames HD, Peters LJ. A new isoeffect curve for change in dose per fraction. Radiother Oncol. 1983;1:187–91.

    Article  PubMed  CAS  Google Scholar 

  47. Zeman EM, Schreiber EC, Tepper JE. Basics of radiation therapy. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, editors. Abeloff's clinical oncology. 5th ed. Philadelphia: Churchill Livingstone; 2014. p. 393–422.

    Google Scholar 

  48. Fowler JF. Non-standard fractionation in radiotherapy. Int J Radiat Oncol Biol Phys. 1984;10:755–9.

    Article  PubMed  CAS  Google Scholar 

  49. Fowler JF. The James Kirk memorial lecture. What next in fractionated radiotherapy? Br J Cancer Suppl. 1984;46:285–300.

    Google Scholar 

  50. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62:679–94.

    Article  PubMed  CAS  Google Scholar 

  51. Fowler JF. 21 years of biologically effective dose. Br J Radiol. 2010;83:554–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Barendsen GW. Differences among tissues with respect to iso-effect relations for fractionated irradiation. Strahlentherapie. 1984;160:667–9.

    PubMed  CAS  Google Scholar 

  53. Lee AW, Sze WM, Fowler JF, Chappell R, Leung SF, Teo P. Caution on the use of altered fractionation for nasopharyngeal carcinoma. Radiother Oncol. 1999;52:201–11.

    Google Scholar 

  54. Fowler JF, Harari PM, Leborgne F, Leborgne JH. Acute radiation reactions in oral and pharyngeal mucosa: tolerable levels in altered fractionation schedules. Radiother Oncol. 2003;69:161–8.

    Article  PubMed  Google Scholar 

  55. Leskel L. The stereotactic method and radiosurgery of the brain. Acta Chir Scand. 1951;102:316–9.

    Google Scholar 

  56. Martin A, Gaya A. Stereotactic body radiotherapy: a review. Clin Oncol (R Coll Radiol). 2010;22:157–72.

    Article  CAS  Google Scholar 

  57. Hickey BE, James ML, Lehman M, et al. Fraction size in radiation therapy for breast conservation in early breast cancer. Cochrane Database Syst Rev. 2016;7:CD003860.

    PubMed  Google Scholar 

  58. Chapman JD, Gillespie CJ. The power of radiation biophysics-let’s use it. Int J Radiat Oncol Biol Phys. 2012;84:309–11.

    Article  PubMed  Google Scholar 

  59. Brown JM, Brenner DJ, Carlson DJ. Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85:1159–60.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88:254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nahum AE. The radiobiology of hypofractionation. Clin Oncol (R Coll Radiol). 2015;27:260–9.

    Article  Google Scholar 

  62. Astrahan M. Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med Phys. 2008;35:4161–72.

    Article  PubMed  Google Scholar 

  63. Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18:240–3.

    Article  PubMed  Google Scholar 

  64. Kirkpatrick JP, Brenner DJ, Orton CG. Point/counterpoint. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med Phys. 2009;36:3381–4.

    Article  PubMed  Google Scholar 

  65. Wang JZ, Huang Z, Lo SS, et al. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med. 2010;2:39ra48.

    Article  PubMed  Google Scholar 

  66. Sheu T, Molkentine J, Transtrum MK, et al. Use of the LQ model with large fraction sizes results in underestimation of isoeffect doses. Radiother Oncol. 2013;109:21–5.

    Article  PubMed  Google Scholar 

  67. Ritter M. Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol. 2008;18:249–56.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mehta N, King CR, Agazaryan N, et al. Stereotactic body radiation therapy and 3-dimensional conformal radiotherapy for stage I non-small cell lung cancer: a pooled analysis of biological equivalent dose and local control. Pract Radiat Oncol. 2012;2:288–95.

    Article  PubMed  Google Scholar 

  70. Shuryak I, Carlson DJ, Brown JM, et al. High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients. Radiother Oncol. 2015;115:327–34.

    Article  PubMed  Google Scholar 

  71. Katsoulakis E, Laufer I, Bilsky M, et al. Pathological characteristics of spine metastases treated with high-dose single-fraction stereotactic radiosurgery. Neurosurg Focus. 2017;42:E7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Park C, Papiez L, Zhang S, et al. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847–52.

    Article  PubMed  Google Scholar 

  73. Fowler JF. Linear quadratics is alive and well: in regard to Park et al. (Int J Radiat Oncol Biol Phys 2008;70:847–852). Int J Radiat Oncol Biol Phys. 2008;72:957. author reply 958

    Article  PubMed  Google Scholar 

  74. Williams MV, Denekamp J, Fowler JF. A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys. 1985;11:87–96.

    Article  PubMed  CAS  Google Scholar 

  75. Vitale I, Galluzzi L, Castedo M, et al. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol. 2011;12:385–92.

    Article  PubMed  CAS  Google Scholar 

  76. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19:107–20.

    Article  PubMed  CAS  Google Scholar 

  77. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Meyn R. Apoptosis and response to radiation: implications for radiation therapy. Oncology. 1997;11:349–56.

    PubMed  CAS  Google Scholar 

  79. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  PubMed  CAS  Google Scholar 

  80. Gewirtz DA, Holt SE, Elmore LW. Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol. 2008;76:947–57.

    Article  PubMed  CAS  Google Scholar 

  81. Cho YS, Park SY, Shin HS, et al. Physiological consequences of programmed necrosis, an alternative form of cell demise. Mol Cells. 2010;29:327–32.

    Article  PubMed  CAS  Google Scholar 

  82. Golden EB, Pellicciotta I, Demaria S, et al. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol. 2012;2:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. Oncoimmunology. 2013;2:e26536.

    Article  PubMed  PubMed Central  Google Scholar 

  84. D’Souza NM, Fang P, Logan J, et al. Combining radiation therapy with immune checkpoint blockade for central nervous system malignancies. Front Oncol. 2016;6:212.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rubin P, Casarett GW. Clinical radiation pathology. Philadelphia: WB Saunders; 1968.

    Google Scholar 

  86. Denekamp J. Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol. 1984;23:217–25.

    Article  PubMed  CAS  Google Scholar 

  87. Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91:1071–121.

    Article  PubMed  CAS  Google Scholar 

  88. Lan J, Wan XL, Deng L, et al. Ablative hypofractionated radiotherapy normalizes tumor vasculature in Lewis lung carcinoma mice model. Radiat Res. 2013;179:458–64.

    Article  PubMed  CAS  Google Scholar 

  89. Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol. 2000;35:71–103.

    Article  PubMed  CAS  Google Scholar 

  90. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.

    Article  PubMed  CAS  Google Scholar 

  91. Moeller BJ, Dreher MR, Rabbani ZN, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8:99–110.

    Article  PubMed  CAS  Google Scholar 

  92. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–9.

    Article  PubMed  CAS  Google Scholar 

  93. Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8:89–91.

    Article  PubMed  CAS  Google Scholar 

  94. Moding EJ, Castle KD, Perez BA, et al. Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci Transl Med. 2015;7:278ra34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Song CW, Kim MS, Cho LC, et al. Radiobiological basis of SBRT and SRS. Int J Clin Oncol. 2014;19:570–8.

    Article  PubMed  CAS  Google Scholar 

  96. Kim MS, Kim W, Park IH, et al. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery. Radiat Oncol J. 2015;33:265–75.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Song CW, Lee YJ, Griffin RJ, et al. Indirect tumor cell death after high-dose hypofractionated irradiation: implications for stereotactic body radiation therapy and stereotactic radiation surgery. Int J Radiat Oncol Biol Phys. 2015;93:166–72.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hermens AF, Barendsen GW. Changes of cell proliferation characteristics in a rat rhabdomyosarcoma before and after X-irradiation. Eur J Cancer. 1969;5:173–89.

    Article  PubMed  CAS  Google Scholar 

  99. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10:718–26.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. 2012;2:153.

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Demaria S, Formenti SC. Radiotherapy effects on anti-tumor immunity: implications for cancer treatment. Front Oncol. 2013;3:128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Burnette B, Weichselbaum RR. The immunology of ablative radiation. Semin Radiat Oncol. 2015;25:40–5.

    Article  PubMed  Google Scholar 

  103. Demaria S, Pilones KA, Vanpouille-Box C, et al. The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res. 2014;182:170–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ishihara D, Pop L, Takeshima T, et al. Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment. Cancer Immunol Immunother. 2016;66:281–98.

    Article  PubMed  CAS  Google Scholar 

  105. Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Golden EB, Demaria S, Schiff PB, et al. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Immunol Res. 2013;1:365–72.

    Google Scholar 

  107. Vatner RE, Cooper BT, Vanpouille-Box C, et al. Combinations of immunotherapy and radiation in cancer therapy. Front Oncol. 2014;4:325.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006;24:4833–9.

    Article  PubMed  Google Scholar 

  109. Lo SS, Sahgal A, Chang EL, et al. Serious complications associated with stereotactic ablative radiotherapy and strategies to mitigate the risk. Clin Oncol (R Coll Radiol). 2013;25:378–87.

    Article  CAS  Google Scholar 

  110. Cozzarini C, Fiorino C, Deantoni C, et al. Higher-than-expected severe (grade 3-4) late urinary toxicity after postprostatectomy hypofractionated radiotherapy: a single-institution analysis of 1176 patients. Eur Urol. 2014;66:1024–30.

    Article  PubMed  Google Scholar 

  111. Modh A, Rimner A, Williams E, et al. Local control and toxicity in a large cohort of central lung tumors treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90:1168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Withers HR, Taylor JMG, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988;14:751.

    Article  PubMed  CAS  Google Scholar 

  113. Brown JM, Diehn M, Loo BWJ. Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys. 2010;78:323–7.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Brenner DJ, Hlatky LR, Hahnfeldt PJ, et al. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res. 1998;150:83–91.

    Article  PubMed  CAS  Google Scholar 

  115. Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 2008;18:234–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine M. Zeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeman, E.M. (2018). The History and Radiobiology of Hypofractionation. In: Kaidar-Person, O., Chen, R. (eds) Hypofractionated and Stereotactic Radiation Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-92802-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92802-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92800-5

  • Online ISBN: 978-3-319-92802-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics