Skip to main content
Log in

Physiological consequences of programmed necrosis, an alternative form of cell demise

  • Minireview
  • Published:
Molecules and Cells

Abstract

Cell death occurs spontaneously or in response to external stimuli, and can be largely subdivided into apoptosis and necrosis by the distinct morphological and biochemical features. Unlike apoptosis, necrosis was recognized as the passive and unwanted cell demise committed in a non-regulated and disorganized manner. However, under specific conditions such as caspase intervention, necrosis has been proposed to be regulated in a well-orchestrated way as a backup mechanism of apoptosis. The term programmed necrosis has been coined to describe such an alternative cell death. Recently, at least some regulators governing programmed necrosis have been identified and demonstrated to be interconnected via a wide network of signal pathways by further extensive studies. There is growing evidence that programmed necrosis is not only associated with pathophysiological diseases, but also provides innate immune response to viral infection. Here, we will introduce recent updates on the molecular mechanism and physiological significance of programmed necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, S., Pankow, S., Werner, S., and Munz, B. (2007). Regulation of NF-kappaB activity and keratinocyte differentiation by the RIP4 protein: implications for cutaneous wound repair. J. Invest. Dermatol. 127, 538–544.

    Article  CAS  PubMed  Google Scholar 

  • Agostinis, P., Buytaert, E., Breyssens, H., and Hendrickx, N. (2004). Regulatory pathways in photodynamic therapy induced apoptosis. Photochem. Photobiol. Sci. 3, 721–729.

    Article  CAS  PubMed  Google Scholar 

  • Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C., and Brouckaert, P. (2003). Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat. Immunol. 4, 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Chan, F.K., Shisler, J., Bixby, J.G., Felices, M., Zheng, L., Appel, M., Orenstein, J., Moss, B., and Lenardo, M.J. (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613–51621.

    Article  CAS  PubMed  Google Scholar 

  • Cho, Y.S., Challa, S., Moquin, D., Genga, R., Ray, T.D., Guildford, M., and Chan, F.K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virusinduced inflammation. Cell 137, 1112–1123.

    Article  CAS  PubMed  Google Scholar 

  • Cinquepalmi, L., Boni, L., Dionigi, G., Rovera, F., Diurni, M., Benevento, A., and Dionigi, R. (2006). Long-term results and quality of life of patients undergoing sequential surgical treatment for severe acute pancreatitis complicated by infected pancreatic necrosis. Surg. Infect. 7, S113–116.

    Article  Google Scholar 

  • de Murcia, G., Schreiber, V., Molinete, M., Saulier, B., Poch, O., Masson, M., Niedergang, C., and Menissier de Murcia, J. (1994). Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem. 138, 15–24.

    Article  PubMed  Google Scholar 

  • Degterev, A., Hitomi, J., Germscheid, M., Ch’en, I.L., Korkina, O., Teng, X., Abbott, D., Cuny, G.D., Yuan, C., Wagner, G., et al. (2008). Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrod, T., Park, J.H., Harder, J., Iwakura, Y., and Nunez, G. (2008). Cutting edge: critical role for mesothelial cells in necrosisinduced inflammation through the recognition of IL-1 alpha released from dying cells. J. Immunol. 181, 8194–8198.

    CAS  PubMed  Google Scholar 

  • Galluzzi, L., and Kroemer, G. (2008). Necroptosis: a specialized pathway of programmed necrosis. Cell 135, 1161–1163.

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi, L., and Kroemer, G. (2009). Shigella targets the mitochondrial checkpoint of programmed necrosis. Cell Host Microbe 5, 107–109.

    Article  CAS  PubMed  Google Scholar 

  • Han, W., Xie, J., Li, L., Liu, Z., and Hu, X. (2009). Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14, 674–686.

    Article  CAS  PubMed  Google Scholar 

  • Hartwig, A., Asmuss, M., Blessing, H., Hoffmann, S., Jahnke, G., Khandelwal, S., Pelzer, A., and Burkle, A. (2002). Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability. Food Chem. Toxicol. 40, 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  • He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111.

    Article  CAS  PubMed  Google Scholar 

  • Hitomi, J., Christofferson, D.E., Ng, A., Yao, J., Degterev, A., Xavier, R.J., and Yuan, J. (2008). Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323.

    Article  CAS  PubMed  Google Scholar 

  • Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B., and Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495.

    Article  CAS  PubMed  Google Scholar 

  • Hsu, T.S., Yang, P.M., Tsai, J.S., and Lin, L.Y. (2009). Attenuation of cadmium-induced necrotic cell death by necrostatin-1: potential necrostatin-1 acting sites. Toxicol. Appl. Pharmacol. 235, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y., Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Kang, Y.H., Yi, M.J., Kim, M.J., Park, M.T., Bae, S., Kang, C.M., Cho, C.K., Park, I.C., Park, M.J., Rhee, C.H., et al. (2004). Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res. 64, 8960–8967.

    Article  CAS  PubMed  Google Scholar 

  • Krysko, D.V., D’Herde, K., and Vandenabeele, P. (2006). Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11, 1709–1726.

    Article  PubMed  Google Scholar 

  • Lautier, D., Lagueux, J., Thibodeau, J., Menard, L., and Poirier, G.G. (1993). Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol. Cell. Biochem. 122, 171–193.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822–10828.

    Article  CAS  PubMed  Google Scholar 

  • Micheau, O., and Tschopp, J. (2003). Induction of TNF receptor Imediated apoptosis via two sequential signaling complexes. Cell 114, 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Moubarak, R.S., Yuste, V.J., Artus, C., Bouharrour, A., Greer, P.A., Menissier-de Murcia, J., and Susin, S.A. (2007). Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol. Cell. Biol. 27, 4844–4862.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–658.

    Article  CAS  PubMed  Google Scholar 

  • Pardo, J., Galvez, E.M., Koskinen, A., Simon, M.M., Lobigs, M., Regner, M., and Mullbacher, A. (2009). Caspase-dependent inhibition of mousepox replication by gzmB. PloS one 4, e7512.

    Article  PubMed  Google Scholar 

  • Petit, F., Arnoult, D., Viollet, L., and Estaquier, J. (2003). Intrinsic and extrinsic pathways signaling during HIV-1 mediated cell death. Biochimie 85, 795–811.

    Article  CAS  PubMed  Google Scholar 

  • Porcelli, S.A., and Jacobs, W.R., Jr. (2008). Tuberculosis: unsealing the apoptotic envelope. Nat. Immunol. 9, 1101–1102.

    Article  CAS  PubMed  Google Scholar 

  • Riedl, S.J., and Salvesen, G.S. (2007). The apoptosome: signalling platform of cell death. Nat. Rev. 8, 405–413.

    Article  CAS  Google Scholar 

  • Strasser, A., O’Connor, L., and Dixit, V.M. (2000). Apoptosis signaling. Ann. Rev. Biochem. 69, 217–245.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Huang, S., Liu, Z.G., and Han, J. (2006). Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J. Biol. Chem. 281, 8788–8795.

    Article  CAS  PubMed  Google Scholar 

  • Yang, P.M., Chen, H.C., Tsai, J.S., and Lin, L.Y. (2007). Cadmium induces Ca2+-dependent necrotic cell death through calpaintriggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity. Chem. Res. Toxicol. 20, 406–415.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D.W., Shao, J., Lin, J., Zhang, N., Lu, B.J., Lin, S.C., Dong, M.Q., and Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Zong, W.X., Ditsworth, D., Bauer, D.E., Wang, Z.Q., and Thompson, C.B. (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sik Cho.

About this article

Cite this article

Cho, Y.S., Park, S.Y., Shin, H.S. et al. Physiological consequences of programmed necrosis, an alternative form of cell demise. Mol Cells 29, 327–332 (2010). https://doi.org/10.1007/s10059-010-0066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0066-3

Keywords

Navigation