• Christoforos KachrisEmail author
  • Babak Falsafi
  • Dimitrios Soudris


Emerging applications like cloud computing, machine learning, AI and big data analytics require powerful systems that can process large amounts of data without consuming high power. Furthermore, these emerging applications require fast time-to-market and reduced development times.


  1. 1.
    Esmaeilzadeh H, Blem E, Amant RS, Sankaralingam K, Burger D (2013) Power challenges may end the multicore era. Commun ACM 56(2):93–102Google Scholar
  2. 2.
    Martin C (2014) Post-dennard scaling and the final years of Moores Law. Technical reportGoogle Scholar
  3. 3.
    Esmaeilzadeh H, Blem E, Amant RS, Sankaralingam K, Burger D (2012) Dark silicon and the end of multicore scaling. IEEE Micro 32(3):122–134Google Scholar
  4. 4.
    Kachris C, Soudris D (2016) A survey on reconfigurable accelerators for cloud computing. In: 2016 26th International conference on field programmable logic and applications (FPL), pp 1–10, Aug 2016Google Scholar
  5. 5.
    Xilinx reconfigurable acceleration stack targets machine learning, data analytics and video streaming. Technical report (2016)Google Scholar
  6. 6.
    Byma S, Steffan JG, Bannazadeh H, Leon-Garcia A, Chow P (2014) FPGAs in the cloud: booting virtualized hardware accelerators with openstack. In: 2014 IEEE 22nd annual international symposium on field-programmable custom computing machines (FCCM), pp 109–116, May 2014Google Scholar
  7. 7.
    Cong J, Huang M, Wu D, Hao Yu C (2016) Invited—heterogeneous datacenters: options and opportunities. In: Proceedings of the 53rd annual design automation conference, DAC’16. ACM, New York, NY, USA, pp 16:1–16:6Google Scholar
  8. 8.
  9. 9.
    Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I (2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on networked systems design and implementation, NSDI’12. USENIX Association, Berkeley, CA, USA, pp 2–2Google Scholar
  10. 10.
    Pynq: Pyhton productivity for Zynq. Technical report (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Christoforos Kachris
    • 1
    Email author
  • Babak Falsafi
    • 2
  • Dimitrios Soudris
    • 3
  1. 1.Institute of Communication and Computer Systems (ICCS/NTUA)AthensGreece
  2. 2.École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Department of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations