Skip to main content

Micellar-Based Nanoparticles for Cancer Therapy and Bioimaging

  • Chapter
  • First Online:
Nanooncology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Micelles are versatile nanosized systems composed by amphiphilic molecules. Their small size and capacity to encapsulate both hydrophilic and hydrophobic compounds, as well as their easier functionalization, are some of the characteristics responsible for their multifunctionality, and their potential use in different clinical settings. In fact, micelles have important applications in cancer therapy because of their capacity to deliver hydrophobic anticancer drugs to tumor sites. In recent years, applications beyond the delivery of hydrophobic drugs have been explored. In this chapter, we will discuss the main features of micelles that make them good candidates in the development of systems for cancer therapy and bioimaging. The state-of-the-art and recent advances in academic research and in clinical applications will be discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47(1):113–131

    Article  CAS  Google Scholar 

  2. Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92(7):1343–1355

    Article  Google Scholar 

  3. Xiong XB, Binkhathlan Z, Molavi O, Lavasanifar A (2012) Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery. Acta Biomater 8(6):2017–2033

    Article  CAS  Google Scholar 

  4. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X et al (2015) A review on phospholipids and their main applications in drug delivery systems—ScienceDirect. Asian J Pharm Sci 10(2):81–98

    Article  CAS  Google Scholar 

  5. Urbani CN, Bell CA, Lonsdale D, Whittaker MR, Monteiro MJ (2008) Self-assembly of amphiphilic polymeric dendrimers synthesized with selective degradable linkages. Macromolecules 41:76–86

    Article  CAS  Google Scholar 

  6. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269

    Article  CAS  Google Scholar 

  7. Torchilin V (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16

    Article  CAS  Google Scholar 

  8. Andrade F, Videira M, Ferreira D, Sarmento B (2011) Micelle-based systems for pulmonary drug delivery and targeting. Drug Deliv Lett 1(2):171–185

    CAS  Google Scholar 

  9. Myers D (2006) Surfactant science and technology, 3rd edn. Wiley-Interscience, USA, p 380

    Google Scholar 

  10. Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, Inc., 335 p

    Google Scholar 

  11. Chen L, Ci T, Li T, Yu L, Ding J (2014) Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol-gel transition in water. Macromolecules 47(17):5895–5903

    Article  CAS  Google Scholar 

  12. Abdelhamid D, Arslan H, Zhang Y, Uhrich KE (2014) Role of branching of hydrophilic domain on physicochemical properties of amphiphilic macromolecules. Polym Chem 5(4):1457–1462

    Article  CAS  Google Scholar 

  13. Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453(1):198–214

    Article  CAS  Google Scholar 

  14. Letchford K, Liggins R, Burt H (2008) Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. J Pharm Sci 97(3):1179–1190

    Article  CAS  Google Scholar 

  15. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37(13):1590–1598

    Article  CAS  Google Scholar 

  16. Kwon G, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116

    Article  CAS  Google Scholar 

  17. Zhang Y, Huang Y, Li S (2014) Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 15(4):862–871

    Article  CAS  Google Scholar 

  18. Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T (2004) Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res 21(11):2001–2008

    Article  CAS  Google Scholar 

  19. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6(6):714–729

    Article  CAS  Google Scholar 

  20. Le Garrec D, Ranger M, Leroux J-C (2004) Micelles in anticancer drug delivery. Am J Drug Deliv 2(1):15–42

    Article  Google Scholar 

  21. Ohuchi M, Harada M, Amano Y, Kato Y, (2009) Physiologically active polypeptide- or protein-encapsulating polymer micelles, and method for production of the same (US 2009/0291130 A1)

    Google Scholar 

  22. Liaw J, Chang SF, Hsiao FC (2001) In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther 8(13):999–1004

    Article  CAS  Google Scholar 

  23. Torchilin VP (2002) PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54(2):235–252

    Article  CAS  Google Scholar 

  24. Movassaghian S, Merkel OM, Torchilin VP (2017) Applications of polymer micelles for imaging and drug delivery. Wiley Interdisc Rev Nanomed Nanobiotechnol 7(5):691–707

    Article  CAS  Google Scholar 

  25. Batrakova EV, Li S, Alakhov VY, Miller DW, Kabanov AV (2003) Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. J Pharmacol Exp Ther 304(2):845–854

    Article  CAS  Google Scholar 

  26. Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X (2013) Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomed 8:73–84

    Google Scholar 

  27. Batrakova EV, Kelly DL, Li S, Li Y, Yang Z, Xiao L et al (2006) Alteration of genomic responses to doxorubicin and prevention of MDR in breast cancer cells by a polymer excipient: pluronic P85. Mol Pharm 3(2):113–123

    Article  CAS  Google Scholar 

  28. Miller DW, Batrakova EV, Kabanov AV (1999) Inhibition of multidrug resistance-associated protein (MRP) functional activity with pluronic block copolymers. Pharm Res 16(3):396–401

    Article  CAS  Google Scholar 

  29. Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18(10):412–420

    Article  CAS  Google Scholar 

  30. Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Controlled Release 82(2–3):189–212

    Article  CAS  Google Scholar 

  31. Ho K, Li W, Wong C, Li P (2010) Amphiphilic polymeric particles with core-shell nanostructures: emulsion-based syntheses and potential applications. Colloid Polym Sci 288(16–17):1503–1523

    Article  CAS  Google Scholar 

  32. Kwon GS (2006) Amphiphilic block copolymer micelles for nanoscale drug delivery. Drug Develop Res 67:15–22

    Article  CAS  Google Scholar 

  33. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  Google Scholar 

  34. Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478

    Article  CAS  Google Scholar 

  35. Chaudhari KR, Ukawala M, Manjappa AS, Kumar A, Mundada PK, Mishra AK et al (2012) Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res 29(1):53–68

    Article  CAS  Google Scholar 

  36. Rösler A, Vandermeulen GW, Klok HA (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53(1):95–108

    Article  Google Scholar 

  37. Xu Q, Liu Y, Su S, Li W, Chen C, Wu Y (2012) Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles. Biomaterials 33(5):1627–1639

    Article  CAS  Google Scholar 

  38. Shahin M, Ahmed S, Kaur K, Lavasanifar A (2011) Decoration of polymeric micelles with cancer-specific peptide ligands for active targeting of paclitaxel. Biomaterials 32(22):5123–5133

    Article  CAS  Google Scholar 

  39. Kumar M, Kumar N, Domb A, Arora M (2002) Pharmaceutical polymeric controlled drug delivery systems. Filled Elastomers Drug Deliv Syst 160:45–117

    Article  CAS  Google Scholar 

  40. Smith A, Xu X, McCormick C (2010) Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog Polym Sci 35(1–2):45–93

    Article  CAS  Google Scholar 

  41. Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242

    Article  CAS  Google Scholar 

  42. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35(1–2):174–211

    Article  CAS  Google Scholar 

  43. Hu Y, Litwin T, Nagaraja AR, Kwong B, Katz J, Watson N et al (2007) Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett 7(10):3056–3064

    Article  CAS  Google Scholar 

  44. Priya James H, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sin B 4(2):120–127

    Article  Google Scholar 

  45. Guo W, Wang T, Tang X, Zhang Q, Yu F, Pei M (2014) Triple stimuli-responsive amphiphilic glycopolymer. J Polym Sci, Part A: Polym Chem 52(15):2131–2138

    Article  CAS  Google Scholar 

  46. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5)

    Article  CAS  Google Scholar 

  47. Seruga B, Ocana A, Tannock IF (2011) Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 8(1):12–23

    Article  CAS  Google Scholar 

  48. Plapied L, Duhem N, des Rieux A, Préat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16(3):228–237

    Article  CAS  Google Scholar 

  49. Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today 15(19):842–850

    Article  CAS  Google Scholar 

  50. Csaba N, Garcia-Fuentes M, Alonso MJ (2006) The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Delivery 3(4):463–478

    Article  CAS  Google Scholar 

  51. Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS et al (2017) Polymeric micelles: basic research to clinical practice. Int J Pharm 532(1):249–268

    Article  CAS  Google Scholar 

  52. Lv S, Tang Z, Li M, Lin J, Song W, Liu H et al (2014) Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials 35(23):6118–6129

    Article  CAS  Google Scholar 

  53. Zhang W, Shi Y, Chen Y, Ye J, Sha X, Fang X (2011) Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 32(11):2894–2906

    Article  CAS  Google Scholar 

  54. Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Controlled Release 128(2):99–112

    Article  CAS  Google Scholar 

  55. Mo R, Jin X, Li N, Ju C, Sun M, Zhang C et al (2011) The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials 32(20):4609–4620

    Article  CAS  Google Scholar 

  56. Li W, Li J, Gao J, Li B, Xia Y, Meng Y et al (2011) The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors. Biomaterials 32(15):3832–3844

    Article  CAS  Google Scholar 

  57. Li W, Zhao H, Qian W, Li H, Zhang L, Ye Z et al (2012) Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials 33(21):5349–5362

    Article  CAS  Google Scholar 

  58. Némethy Á, Solti K, Kiss L, Gyarmati B, Deli MA, Csányi E et al (2013) pH-and temperature-responsive poly(aspartic acid)-l-poly(N-isopropylacrylamide) conetwork hydrogel. Eur Polymer J 49(9):2392–2403

    Article  CAS  Google Scholar 

  59. Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S et al (2013) Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7(7):5858–5869

    Article  CAS  Google Scholar 

  60. Guan J, Zhou Z-Q, Chen M-H, Li H-Y, Tong D-N, Yang J et al (2017) Folate-conjugated and pH-responsive polymeric micelles for target-cell-specific anticancer drug delivery. Acta Biomater 60:244–255

    Article  CAS  Google Scholar 

  61. Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94(10):2135–2146

    Article  CAS  Google Scholar 

  62. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y et al (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91(10):1775–1781

    Article  CAS  Google Scholar 

  63. Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M et al (2001) Development of the polymer micelle carrier system for doxorubicin. J Controlled Release 74(1):295–302

    Article  CAS  Google Scholar 

  64. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS et al (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18(12):2009–2014

    Article  Google Scholar 

  65. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB et al (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250

    Article  CAS  Google Scholar 

  66. Saif MW, Rubin MS, Figueroa JA, Kerr RO (2008) Multicenter phase II trial of Genexol-PM (GPM), a novel Cremophor-free, polymeric micelle formulation of paclitaxel in patients with advanced pancreatic cancer (APC): final results. In: Gastrointestinal cancers symposium; Orlando2008

    Google Scholar 

  67. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW et al (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Controlled Release 72(1):191–202

    Article  CAS  Google Scholar 

  68. Valle JW, Armstrong A, Newman C, Alakhov V, Pietrzynski G, Brewer J et al (2011) A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Invest New Drugs 29(5):1029–1037

    Article  CAS  Google Scholar 

  69. Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I et al (2005) NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92(7):1240–1246

    Article  CAS  Google Scholar 

  70. Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW (2016) Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 3:16034

    Article  CAS  Google Scholar 

  71. Kaufmann KB, Büning H, Galy A, Schambach A, Grez M (2013) Gene therapy on the move. EMBO Mol Med 5(11):1642–1661

    Article  CAS  Google Scholar 

  72. Wang D, Gao G (2014) State-of-the-art human gene therapy: part I. gene delivery technologies. Discov Med 18(97):67–77

    Google Scholar 

  73. Videira M, Arranja A, Rafael D, Gaspar R (2014) Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. Nanomedicine 10(4):689–702

    Article  CAS  Google Scholar 

  74. EMA. Glybera. EPAR—product information. www.ema.europa.eu2012

  75. Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116(2):255–264

    Article  CAS  Google Scholar 

  76. Eliyahu H, Joseph A, Schillemans JP, Azzam T, Domb AJ, Barenholz Y (2007) Characterization and in vivo performance of dextran-spermine polyplexes and DOTAP/cholesterol lipoplexes administered locally and systemically. Biomaterials 28(14):2339–2349

    Article  CAS  Google Scholar 

  77. Liu F, Huang L (2002) Development of non-viral vectors for systemic gene delivery. J Control Release 78(1–3):259–266

    Article  CAS  Google Scholar 

  78. Zhang XX, McIntosh TJ, Grinstaff MW (2012) Functional lipids and lipoplexes for improved gene delivery. Biochimie 94(1):42–58

    Article  CAS  Google Scholar 

  79. Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z (2004) Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release 100(2):165–180

    Article  CAS  Google Scholar 

  80. Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 161(2):554–565

    Article  CAS  Google Scholar 

  81. Yang Z, Sahay G, Sriadibhatla S, Kabanov AV (2008) Amphiphilic block copolymers enhance cellular uptake and nuclear entry of polyplex-delivered DNA. Bioconjug Chem 19(10):1987–1994

    Article  CAS  Google Scholar 

  82. Mishra S, Peddada LY, Devore DI, Roth CM (2012) Poly(alkylene oxide) Copolymers for Nucleic Acid Delivery. Acc Chem Res 45(7):1057–1066

    Article  CAS  Google Scholar 

  83. Wang M, Wu B, Lu P, Tucker JD, Milazi S, Shah SN et al (2014) Pluronic-PEI copolymers enhance exon-skipping of 2′-O-methyl phosphorothioate oligonucleotide in cell culture and dystrophic mdx mice. Gene Ther 21(1):52–59

    Article  CAS  Google Scholar 

  84. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668

    Article  CAS  Google Scholar 

  85. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589

    Article  CAS  Google Scholar 

  86. Mi P, Kokuryo D, Cabral H, Kumagai M, Nomoto T, Aoki I et al (2014) Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. J Control Release 174:63–71

    Article  CAS  Google Scholar 

  87. Kim KS, Park W, Hu J, Bae YH, Na K (2014) A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials 35(1):337–343

    Article  CAS  Google Scholar 

  88. Xiao Y, Lin ZT, Chen Y, Wang H, Deng YL, Le DE et al (2015) High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging. Int J Nanomed 10:1155–1172

    CAS  Google Scholar 

  89. Hong GB, Zhou JX, Yuan RX (2012) Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity. Int J Nanomed 7:2863–2872

    CAS  Google Scholar 

  90. Kaida S, Cabral H, Kumagai M, Kishimura A, Terada Y, Sekino M et al (2010) Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res 70(18):7031–7041

    Article  CAS  Google Scholar 

  91. Lee SY, Yang CY, Peng CL, Wei MF, Chen KC, Yao CJ et al (2016) A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy. Biomaterials 86:92–105

    Article  CAS  Google Scholar 

  92. Guthi JS, Yang SG, Huang G, Li S, Khemtong C, Kessinger CW et al (2010) MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 7(1):32–40

    Article  CAS  Google Scholar 

  93. Kessinger CW, Khemtong C, Togao O, Takahashi M, Sumer BD, Gao J (2010) In vivo angiogenesis imaging of solid tumors by αvβ3-targeted, dual-modality micellar nanoprobes. Exp Biol Med 235:957–965

    Article  CAS  Google Scholar 

  94. Hoang B, Ekdawi SN, Reilly RM, Allen C (2013) Active targeting of block copolymer micelles with trastuzumab Fab fragments and nuclear localization signal leads to increased tumor uptake and nuclear localization in HER2-overexpressing xenografts. Mol Pharm 10(11):4229–4241

    Article  CAS  Google Scholar 

  95. Sawant R, Jhaveri A (2014) Micellar nanopreparations for medicine. In: Torchilin V (ed) Handbook of nanobiomedical research: fundamentals, applications and recent developments. Frontiers in Nanobiomedical Research, vol 3. World Scientific, Singapore

    Google Scholar 

  96. Hammad A, Mosaad YM, Hammad EM, Elhanbly S, El-Bassiony SR, Al-Harrass MF et al (2016) Interleukin-17A rs2275913, Interleukin-17F rs763780 and rs2397084 gene polymorphisms as possible risk factors in Juvenile lupus and lupus related nephritis. Autoimmunity 49(1):31–40

    Article  CAS  Google Scholar 

  97. Evaluate the efficacy and safety of genexol®-PM compared to genexol® in recurrent or metastatic breast cancer 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT00876486]

  98. Lu HQ, Wang EQ, Zhang T, Chen YX (2016) Photodynamic therapy and anti-vascular endothelial growth factor for acute central serous chorioretinopathy: a systematic review and meta-analysis. Eye 30(1):15–22

    Article  CAS  Google Scholar 

  99. A phase II trial of genexol-PM and gemcitabine in patients with advanced non-small-cell lung cancer 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT01770795]

  100. Ronnekleiv-Kelly SM, Nukaya M, Diaz-Diaz CJ, Megna BW, Carney PR, Geiger PG et al (2016) Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells. Cancer Lett 370(1):91–99

    Article  CAS  Google Scholar 

  101. A study of NK012 in patients with relapsed small cell lung cancer 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT00951613]

  102. Schneider M, Strobele S, Nonnenmacher L, Siegelin MD, Tepper M, Stroh S et al (2016) A paired comparison between glioblastoma “stem cells” and differentiated cells. Int J Cancer 138(7):1709–1718

    Article  CAS  Google Scholar 

  103. A phase III study of NK105 in patients with breast cancer 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT01644890]

  104. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y et al (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91(10):1775–1781

    Article  CAS  Google Scholar 

  105. A phase 1 dose-escalation and pharmacokinetic study of NC-4016 in patients with advanced solid tumors or lymphoma 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT01999491]

  106. Dose-escalation and expansion trial of NC-6300 in patients with advanced solid tumors or soft tissue sarcoma 2017 [Available from: https://clinicaltrials.gov/ct2/show/record/NCT03168061]

  107. Combination therapy with NC-6004 and gemcitabine versus gemcitabine alone in pancreatic cancer 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT02043288]

  108. Combination therapy with NC-6004 and gemcitabine in advanced solid tumors or non-small cell lung, biliary and bladder cancer 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT02240238]

  109. Efficacy study of maintenance IT-101 therapy for ovarian cancer patients 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT00753740]

  110. Study of CRLX101 (Formerly Named IT-101) in the treatment of advanced solid tumors 2016 [Available from: https://clinicaltrials.gov/ct2/show/NCT00333502]

  111. BIND therapeutics. An open label, multicenter, Phase 2 study to determine the safety and efficacy of BIND-014 (docetaxel nanoparticles for injectable suspension) as a second-line therapy for patients with KRAS mutation positive or squamous cell non-small cell lung cancer. NCT02283320: https://clinicaltrials.gov

  112. BIND therapeutics. A phase 1 open label, safety, pharmacokinetic and pharmacodynamic dose escalation study of BIND-014 (docetaxel nanoparticles for injectable suspension), given by intravenous infusion to patients with advanced or metastatic cancer. NCT01300533: https://clinicaltrials.gov

  113. BIND therapeutics. An open label, multicenter, phase 2 study to determine the safety and efficacy of BIND-014 (docetaxel nanoparticles for injectable suspension), administered to patients with metastatic castration-resistant prostate cancer. NCT01812746: https://clinicaltrials.gov

  114. Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, LoRusso PM et al (2016) Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 22(13):3157–3163

    Article  CAS  Google Scholar 

  115. Zhu Y, Sheng R, Luo T, Li H, Sun W, Li Y et al (2011) Amphiphilic cationic [dendritic poly(L-lysine)]-block-poly(L-lactide)-block-[dendritic poly(L-lysine)]s in aqueous solution: self-aggregation and interaction with DNA as gene delivery carriers. Macromol Biosci 11(2):174–186

    Article  CAS  Google Scholar 

  116. Ulasov AV, Khramtsov YV, Trusov GA, Rosenkranz AA, Sverdlov ED, Sobolev AS (2011) Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol Ther 19(1):103–112

    Article  CAS  Google Scholar 

  117. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG et al (2010) Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials 31(8):2408–2416

    Article  CAS  Google Scholar 

  118. Lee SH, Lee JY, Kim JS, Park TG, Mok H (2017) Amphiphilic siRNA Conjugates for Co-Delivery of Nucleic Acids and Hydrophobic Drugs. Bioconjug Chem 28(8):2051–2061

    Article  CAS  Google Scholar 

  119. Wang S, Zhang J, Wang Y, Chen M (2016) Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomed Nanotechnol Biol Med 12(2):411–420

    Article  CAS  Google Scholar 

  120. Ebrahimian M, Taghavi S, Mokhtarzadeh A, Ramezani M, Hashemi M (2017) Co-delivery of doxorubicin encapsulated PLGA nanoparticles and Bcl-xL shRNA using alkyl-modified PEI into breast cancer cells. Appl Biochem Biotechnol

    Article  CAS  Google Scholar 

  121. Devulapally R, Sekar NM, Sekar TV, Foygel K, Massoud TF, Willmann JK et al (2015) Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano 9(3):2290–2302

    Article  CAS  Google Scholar 

  122. Kang L, Gao Z, Huang W, Jin M, Wang Q (2015) Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sinica B 5(3):169–175

    Article  Google Scholar 

  123. Chen W, Yuan Y, Cheng D, Chen J, Wang L, Shuai X (2014) Co-delivery of doxorubicin and siRNA with reduction and pH dually sensitive nanocarrier for synergistic cancer therapy. Small 10(13):2678–2687

    Article  CAS  Google Scholar 

  124. Tang S, Yin Q, Zhang Z, Gu W, Chen L, Yu H et al (2014) Co-delivery of doxorubicin and RNA using pH-sensitive poly(beta-amino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials 35(23):6047–6059

    Article  CAS  Google Scholar 

  125. Li Y, Xu B, Bai T, Liu W (2015) Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy. Biomaterials 55:12–23

    Article  CAS  Google Scholar 

  126. Itaka K, Osada K, Morii K, Kim P, Yun SH, Kataoka K (2010) Polyplex nanomicelle promotes hydrodynamic gene introduction to skeletal muscle. J Control Release 143(1):112–119

    Article  CAS  Google Scholar 

  127. Uchida S, Itaka K, Chen Q, Osada K, Miyata K, Ishii T et al (2011) Combination of chondroitin sulfate and polyplex micelles from Poly(ethylene glycol)-poly{N′-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} block copolymer for prolonged in vivo gene transfection with reduced toxicity. J Control Release 155(2):296–302

    Article  CAS  Google Scholar 

  128. Chen Q, Osada K, Ishii T, Oba M, Uchida S, Tockary TA et al (2012) Homo-catiomer integration into PEGylated polyplex micelle from block-catiomer for systemic anti-angiogenic gene therapy for fibrotic pancreatic tumors. Biomaterials 33(18):4722–4730

    Article  CAS  Google Scholar 

  129. Chen YC, Jiang LP, Liu NX, Ding L, Liu XL, Wang ZH et al (2011) Enhanced gene transduction into skeletal muscle of mice in vivo with pluronic block copolymers and ultrasound exposure. Cell Biochem Biophys 60(3):267–273

    Article  CAS  Google Scholar 

  130. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070

    Article  CAS  Google Scholar 

  131. Zuckerman JE, Hsueh T, Koya RC, Davis ME, Ribas A (2011) siRNA knockdown of ribonucleotide reductase inhibits melanoma cell line proliferation alone or synergistically with temozolomide. J Invest Dermatol 131(2):453–460

    Article  CAS  Google Scholar 

  132. Gaspar VM, Goncalves C, de Melo-Diogo D, Costa EC, Queiroz JA, Pichon C et al (2014) Poly(2-ethyl-2-oxazoline)-PLA-g-PEI amphiphilic triblock micelles for co-delivery of minicircle DNA and chemotherapeutics. J Controlled Release: Official J Controlled Release Soc 189:90–104

    Article  CAS  Google Scholar 

  133. Bao X, Wang W, Wang C, Wang Y, Zhou J, Ding Y et al (2014) A chitosan-graft-PEI-candesartan conjugate for targeted co-delivery of drug and gene in anti-angiogenesis cancer therapy. Biomaterials 35(29):8450–8466

    Article  CAS  Google Scholar 

  134. Yin T, Wang L, Yin L, Zhou J, Huo M (2015) Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Biomaterials 61:10–25

    Article  CAS  Google Scholar 

  135. Loh XJ, Ong SJ, Tung YT, Choo HT (2013) Co-delivery of drug and DNA from cationic dual-responsive micelles derived from poly(DMAEMA-co-PPGMA). Mater Sci Eng C, Mater Bio Appl 33(8):4545–4550

    Article  CAS  Google Scholar 

  136. Shi S, Shi K, Tan L, Qu Y, Shen G, Chu B et al (2014) The use of cationic MPEG-PCL-g-PEI micelles for co-delivery of Msurvivin T34A gene and doxorubicin. Biomaterials 35(15):4536–4547

    Article  CAS  Google Scholar 

  137. Qian X, Long L, Shi Z, Liu C, Qiu M, Sheng J et al (2014) Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials 35(7):2322–2335

    Article  CAS  Google Scholar 

  138. Davoodi P, Srinivasan MP, Wang CH (2016) Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(epsilon-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA. Acta Biomater 39:79–93

    Article  CAS  Google Scholar 

  139. Aji Alex MR, Nehate C, Veeranarayanan S, Kumar DS, Kulshreshtha R, Koul V (2017) Self assembled dual responsive micelles stabilized with protein for co-delivery of drug and siRNA in cancer therapy. Biomaterials 133:94–106

    Article  CAS  Google Scholar 

  140. Zhu L, Perche F, Wang T, Torchilin VP (2014) Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 35(13):4213–4222

    Article  CAS  Google Scholar 

  141. Xiao Y, Hong H, Javadi A, Engle J, Xu W, Yang Y et al (2012) Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging—ScienceDirect. Biomaterials 33(11):3071–3082

    Article  CAS  Google Scholar 

  142. Torchilin VP, Frank-Kamenetsky MD, Wolf GL (1999) CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad Radiol 6(1):61–65

    Article  CAS  Google Scholar 

  143. Guo J, Hong H, Chen G, Shi S, Zheng Q, Zhang Y et al (2013) Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials 34(33):8323–8332

    Article  CAS  Google Scholar 

  144. Patil RR, Yu J, Banerjee SR, Ren Y, Leong D, Jiang X et al (2011) Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol Ther 19(9):1626–1635

    Article  CAS  Google Scholar 

  145. Li X, Li H, Yi W, Chen J, Liang B (2013) Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells. Int J Nanomed 8:3019–3031

    Google Scholar 

  146. Asem H, Zhao Y, Ye F, Barrefelt A, Abedi-Valugerdi M, El-Sayed R et al (2016) Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging. J Nanobiotechnol 14(1):82

    Article  CAS  Google Scholar 

  147. Hong G, Yuan R, Liang B, Shen J, Yang X, Shuai X (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices 10(5):693–700

    Article  CAS  Google Scholar 

  148. Liao C, Sun Q, Liang B, Shen J, Shuai X (2011) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80(3):699–705

    Google Scholar 

  149. Guo J, Hong H, Chen G, Shi S, Nayak TR, Theuer CP et al (2014) Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. ACS Appl Mater Interfaces 6(24):21769–21779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This chapter is a result of the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

This work was partially funded by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). Andreia Almeida (grant SFRH/BD/118721/2016) and Fernanda Andrade (grant SFRH/BPD/120849/2016) would like to thank Fundação para a Ciência e a Tecnologia (FCT), Portugal for financial support.

This research was also partially supported by CESPU/IINFACTS under the project MicelCampt-CESPU-2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda Andrade or Bruno Sarmento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrade, F., Almeida, A., Rafael, D., Schwartz, S., Sarmento, B. (2018). Micellar-Based Nanoparticles for Cancer Therapy and Bioimaging. In: Gonçalves, G., Tobias, G. (eds) Nanooncology. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-89878-0_6

Download citation

Publish with us

Policies and ethics