Advertisement

Maritime Pine Pinus Pinaster Aiton

  • Maria Cano
  • Angeles Morcillo
  • Alicia Humánez
  • Isabel Mendoza-Poudereux
  • Alex Alborch
  • Juan Segura
  • Isabel Arrillaga
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Maritime pine (Pinus pinaster Aiton) is the most abundant conifer in the Mediterranean basin. Currently, maritime pine is considered to be a model conifer species for study of the adaption responses to drought stress from a genomics approach. In this context, the availability of protocols that allow not only mass vegetative propagation of selected families or genotypes, but also facilitate the functional analyses needed to verify and further to study the effects of candidate genes are necessary. Here we describe an improved protocol to generate maritime pine plants through somatic embryogenesis from immature megagametophytes. Accurate procedures for explant preparation, somatic embryo induction, proliferation, cryopreservation, maturation, germination, plant formation, and acclimatization are described.

Notes

Acknowledgements

This work is being supported by the research projects cofinanced by the MINECO (Spanish Government) and the EU (AGL2013-47400-C4-04-R; AGL2016-76143-C4-1-R) and by predoctoral contracts to M.C. (University of Valencia) and M.M. (MINECO). Plant material supply by the Generalitat Valenciana (Centro para la Investigación y Experimentacion Forestal) by the Unit of Forest Genetic Resources (MAPAMA), TRAGSA and Servicio de Montes, Xunta de Galicia is acknowledged.

References

  1. Alía R, Martín S (2003) EUFORGEN. Technical Guidelines for genetic conservation and use for Maritime pine (Pinus pinaster). International Plant Genetic Resources Institute, Rome, Italy. 6pGoogle Scholar
  2. Alvarez JM, Majada J, Ordás RJ (2009) An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 82:175–184CrossRefGoogle Scholar
  3. Arrillaga I, Morcillo M, Cano M, Sales E, Peris JB, Segura J, Orlando L, Alborch A, Cano V, Corredoira E, Martínez MT, Cernadas MJ, Montenegro R, Vieitez FJ, Nisa M, Ramírez N, Hernández I, Ruiz-Galea M, González-Cabrero N, Celestino C, Montalbán I, Alegre J, Ballester A, Moncaleán P, San-José MC, Toribio M (2016) Increasing resilience in forest tree species: a possible additional advantage for somatic embryogenesis technology. In: Proceedings fourth international conference of the IUFRO working party 2.09.02 “somatic embryogenesis and other vegetative propagation technologies”. La Plata (Argentina) September 2016Google Scholar
  4. Arrillaga I, Guevara MA, Muñoz-Bertomeu J, Lázaro-Gimeno D, Sáez-Laguna E, Díaz LM, Torralba L, Mendoza-Poudereux I, Segura J, Cervera MT (2014) Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species. Plant Cell Tiss Organ Cult 118:147–155CrossRefGoogle Scholar
  5. Cabezas JA, Morcillo M, Vélez MD, Díaz L, Segura J, Cervera MT, Arrillaga I (2016) Haploids in Conifer Species: Characterization and Chromosomal Integrity of a Maritime Pine Cell Line Forests 7:274.  https://doi.org/10.3390/f7110274CrossRefGoogle Scholar
  6. Calixto F, Pais S (1997) Adventitious shoot formation and plant regeneration from Pinus pinaster Sol. ex Aiton. In vitro Cell Dev Biol-Plant 33:119–124CrossRefGoogle Scholar
  7. Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N, Rueda-López M, Guerrero-Fernández D, Castro-Rodríguez V, Benzekri H, Cañas RA, Guevara M-A, Rodrigues A, Seoane P, Teyssier C, Morel A, Ehrenmann F, Le Provost G, Lalanne C, Noirot C, Klopp C, Reymond I, García-Gutiérrez A, Trontin J-F, Lelu-Walter M-A, Miguel C, Cervera MT, Cantón FR, Plomion C, Harvengt L, Avila C, Gonzalo Claros M, Cánovas FM (2014) De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotech J 12:286–299.  https://doi.org/10.1111/pbi.12136CrossRefGoogle Scholar
  8. David A, David H, Mateille T (1982) In vitro adventitious budding on Pinus pinaster cotyledons and needles. Plant Physiol 56:102–107CrossRefGoogle Scholar
  9. de Diego N, Montalbán I, de Larrinoa E, Moncaleán P (2008) In vitro regeneration of Pinus pinaster adult trees. Can J For Res 38:2607–2615CrossRefGoogle Scholar
  10. de Miguel M, Cabezas JA, de María N, Sánchez-Gómez D, Guevara MÁ, Vélez MD, Sáez-Laguna E, Díaz LM, Mancha JA, Barbero MC et al (2014) Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: Integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genom 15:464.  https://doi.org/10.1186/1471-2164-15-464CrossRefGoogle Scholar
  11. Grégoire JC, Evans HF (2004) Damage and control of bawbilt organisms an overview. In: Lieutier F, Day KR, Battisti A, Grégoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. pp 19–37Google Scholar
  12. Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179CrossRefGoogle Scholar
  13. Holeski L, Jander G, Agrawal A (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626CrossRefGoogle Scholar
  14. Humánez A, Blasco M, Brisa MC, Segura J, Arrillaga I (2011) Thidiazuron enhances axillary and adventitious shoot proliferation in juvenile explants of Mediterranean provenances of maritime pine (Pinus pinaster). In Vitro Cell Dev Biol-Plant 47:569–577.  https://doi.org/10.1007/s11627-011-9397-9CrossRefGoogle Scholar
  15. Humánez A, Blasco M, Brisa MC, Segura J, Arrillaga I (2012) Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Cell Tiss Organ Cult 111:373–383.  https://doi.org/10.1007/s11240-012-0203-0CrossRefGoogle Scholar
  16. Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotech 1:11–25Google Scholar
  17. Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776CrossRefGoogle Scholar
  18. Lelu-Walter MA, Klimaszewska K, Miguel C, Aronen T, Hargreaves C, Teyssier C, Trontin JF (2016) Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: bottlenecks and recent advances. In: Somatic embryogenesis—fundamental aspects and applications. Springer International Publishing, pp 319–365. 10.1007/978-3-319-33705-0-19CrossRefGoogle Scholar
  19. Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:25–328CrossRefGoogle Scholar
  20. MacKay J, Dean JFD, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MA, Fluch S et al (2012) Towards decoding the conifer giga-genome. Plant Mol Biol 80:555–569CrossRefGoogle Scholar
  21. Marum L, Estêvão C, Oliveira M, Amâncio S, Rodrigues L, Miguel C (2004) Recovery of cryopreserved embryogenic cultures of maritime pine- effect of cryoprotectant ans suspension density. CryoLett 25:363–374Google Scholar
  22. Miguel C, Gonzalves S, Tereso S, Marum L, Maroco J, Oliveira MM (2004) Somatic embryogenesis from 20 open-pollinated seed families of Portuguese plus trees of maritime pine. Plant Cell Tiss Org Cult 76:121–130CrossRefGoogle Scholar
  23. Morcillo A, Blasco M, Lorenzo L, Almazán V, Brisa C, Segura J, Arrillaga I (2012) Somatic embryogenesis from Spanish provenances of maritime pine. In: Park YS, Bonga JM (eds) Proceedings of the IUFRO working party 2.09.02 conference on “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management” 25–28 June 2012, Brno Czech Republic. Published online: http://www.iufro20902.org/. pp 163–165
  24. Morel A, Teyssier C, Trontin JF, Pešek B, Eliášová K, Beaufour M, Morabito D, Boizot N, Le Metté C, Belal-Bessai L, Reymond I, Harvengt L, Cadene M, Corbineau F, Vágner M, Label P, Lelu-Walter MA (2014) Early molecular events involved in Pinus pinaster Ait somatic embryo development under reduced water availability: transcriptomic and proteomic analysis. Physiol Plant 152:184–201CrossRefGoogle Scholar
  25. Saez-Laguna E, Guevara MA, Dıaz LM, Sanchez-Gomez D, Collada C, Aranda I, Cervera MT (2014) Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L. PLoS ONE 9(8):e103145.  https://doi.org/10.1371/journal.pone.0103145CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tereso S, Goncalves S, Marum L, Oliveira M, Maroco J, Miguel C (2006) Improved axillary and adventitious bud regeneration from Portuguese genotypes of Pinus pinaster. Prop Orn Plant 6:24–33Google Scholar
  27. Trontin JF, Debille S, Canlet F, Harvengt L, Lelu-Walter MA, Label P, Teyssier C, Miguel C, De Vega-Bartol J, Tonelli M, Santos R, Rupps A, Hassani SB, Zoglauer K, Carneros E, Díaz-Sala C, Abarca D, Arrillaga I, Mendoza-Poudereux I, Segura J, Avila C, Saez C, Rueda M, Canales J, Cánovas F (2012) Somatic embryogenesis as an effective regeneration support for reverse genetics in maritime pine: the Sustainpine collaborative project as an illustration. In: Park YS and Bonga JM (eds) 2nd International conference of the IUFRO Working Party 2.09.02 Brno Czech. Proceedings of the IUFRO working party 2.09.02 conference on ‘Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management’. Published online: http://www.iufro20902.org/, pp 184–186
  28. Umehara M, Ogita S, Sasamoto H, Eun CH, Matsubayashi Y, Sakagami Y, Kamada H (2005) Two stimulatory effects of the peptidyl growth factor phytosulfokine during somatic embryogenesis in Japanese larch (Larix leptolepis Gordon). Plant Sci 169:901–907CrossRefGoogle Scholar
  29. Vivas M, Zas R, Sampedro L, Solla A (2013) Environmental maternal effects mediate the resistance of maritime pine to biotic stress. PLoS ONE 8(7):e70148.  https://doi.org/10.1371/journal.pone.0070148CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wahid N, Gonzalez-MartinezSC, El Hadrami I, Boulli A (2006) Variation of morphological traits in natural populations of maritime pine (Pinus pinaster Ait.) in Morocco. Ann For Sci 63:83–92; 83CrossRefGoogle Scholar
  31. www.procogen. Promoting a functional and comparative understanding of the conifer genome implementing applied aspects for more productive and adapted forests (ProCoGen). Available on line http://www.procogen.eu/. Accessed 10 Nov 2016)
  32. Ying-Ya L, Jiao F, Xiao-Lu Z et al (2015) Pine bark extracts: nutraceutical, pharmacological, and toxicological evaluation. J Pharmacol Exp Ther 353:9–16CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maria Cano
    • 1
  • Angeles Morcillo
    • 1
  • Alicia Humánez
    • 1
  • Isabel Mendoza-Poudereux
    • 1
  • Alex Alborch
    • 1
  • Juan Segura
    • 1
  • Isabel Arrillaga
    • 1
  1. 1.1ISIC/ERI BIOTECMED, Dpto. Biología Vegetal, Facultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain

Personalised recommendations