Skip to main content

Mathematical Modelling of Stepped Beam Energy Harvesting Using Euler–Bernoulli’s Theory

  • Conference paper
  • First Online:
Advanced Materials (PHENMA 2017)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 207))

  • 968 Accesses

Abstract

Energy harvesting with cantilever beam is the most commonly used method for small electrical input devices like sensors etc. Uniform cantilever beam with no concentrated mass at the end produces less energy than the beam with concentrated mass at end. In this paper, instead of addition of the tip mass, single step beam with no concentrated mass is studied. Stepped beam with less stiff end as fixed end, given excitation at the base showing better results than the uniform beam with base excitation at the fixed end in form of transmissibility function. Frequency response function (FRF) has been plotted for voltage output, current and power, showing good results than the uniform beam . While comparing the results between the uniform beam and stepped beam the total mass kept equal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Leo, Engineering Analysis of Smart Material System (Wiley, Hoboken, NJ, 2007)

    Book  Google Scholar 

  2. A. Erturk, D.J. Inman, Smart Mater. Struct. 17, 065016 (2008)

    Article  Google Scholar 

  3. A. Erturk, D.J. Inman, Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  4. A. Erturk, D.J. Inman, J. Intell. Mater. Syst. Struct. 19(11), 1311 (2008)

    Article  CAS  Google Scholar 

  5. A. Erturk, D.J. Inman, J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  6. M.N. Fakhzan, A.G.A. Muthalif, Mechatronics 23(1), 61 (2013)

    Article  Google Scholar 

  7. J.M. Dietl, A.M. Wickenheiser, E. Garcia, Smart Mater. Struct. 19, 055018 (2010)

    Article  Google Scholar 

  8. G. Wang, J. Intell. Mater. Syst. Struct. 24(2), 226 (2012)

    Article  Google Scholar 

  9. S. Mehraeen, K. Corzine, Energy harvesting using piezoelectric materials and high voltage scavenging circuitry and high voltage scavenging circuitry, Faculty Research & Creative Works, Paper 827, Missouri University of Science and Technology (2008)

    Google Scholar 

  10. S. Ben Ayed, A. Abdelkefi, F. Najar, J. Intell. Mater. Syst. Struct. 25(2), 174 (2014)

    Article  Google Scholar 

  11. A.R. Reddy, M. Umapathy, D. Ezhilarasi, G. Uma, J. Vib. Acoust. 22(13), 3057 (2014)

    Google Scholar 

  12. Q.C. Guan, B. Ju, J.W. Xu, Y.B. Liu, Z.H. Feng, J. Intell. Mater. Syst. Struct. 24(9), 1059 (2015)

    Article  Google Scholar 

  13. C.M. Sang, J. Dayou, W.Y.H. Liew, Int. J. Precis. Eng. Manuf. 14(12), 2149 (2013)

    Article  Google Scholar 

  14. J. Dayou, J. Kim, J. Im, L. Zhai, Smart Mater. Struct. 24(4), 45006 (2015)

    Article  Google Scholar 

  15. M. Levinson, J. Sound Vib. 49(1–2), 287 (1976)

    Google Scholar 

  16. S.K. Jang, C.W. Bert, J. Sound Vib. 130(2), 342 (1989)

    Article  Google Scholar 

  17. Rosa M.A. De, J. Sound Vib. 173(4), 563 (1994)

    Article  Google Scholar 

  18. S. Naguleswaran, J. Sound Vib. 252(4), 751 (2002)

    Article  Google Scholar 

  19. M.A. Koplow, A. Bhattacharyya, B.P. Mann, J. Sound Vib. 295(1–2), 214 (2006)

    Article  Google Scholar 

  20. A.M. Wickenheiser, J. Intell. Mater. Syst. Struct. 24(6), 729 (2012)

    Article  Google Scholar 

  21. J.D.C. Vaz, Junior J.J. de Lima, J. Vib. Control 22(1), 193 (2014)

    Article  Google Scholar 

  22. S.S. Rao, Mechanical Vibration, Fifth Edition (Pearson, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prajapati, S.K., Gupta, V.K., Mukherjee, S. (2018). Mathematical Modelling of Stepped Beam Energy Harvesting Using Euler–Bernoulli’s Theory. In: Parinov, I., Chang, SH., Gupta, V. (eds) Advanced Materials . PHENMA 2017. Springer Proceedings in Physics, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_43

Download citation

Publish with us

Policies and ethics