Skip to main content

Regulation of Innate Inflammatory Responses

  • Chapter
  • First Online:
Damage-Associated Molecular Patterns in Human Diseases

Abstract

This chapter addressed one of the most important issues of inflammatory innate immune effector responses: mechanisms of their regulation aimed at avoiding auto-destructive “suicidal” pathologies caused by uncontrolled exaggerated DAMP-induced inflammatory pathways. From the various evolutionarily developed regulatory mechanisms described in the literature, here, three essential regulatory mechanisms are briefly highlighted: epigenetic reprogramming, post-translational modifications, and metabolic changes. Regulating epigenetic changes can be categorized into several major biochemical mechanisms, including changes in (1) DNA methylation; (2) covalent histone post-translational modifications such as histone acetylation, methylation, phosphorylation, and ubiquitination; and (3) RNA-based mechanisms as mediated by small and long non-coding RNAs. Such chromatin modifiers were shown to execute coordinated actions to convert extracellular stimuli into the complex gene expression patterns during innate inflammatory responses. As a striking example of epigenetic regulation, the phenomenon of “trained immunity” is briefly touched reflecting the fact that the innate immune system—like the adaptive immune system—possesses a memory as well. In addition, evidence is presented for a role of post-translational modifications such as phosphorylation, methylation, or acetylation in influencing PRM-dependent inflammatory responses via targeting of innate sensors and downstream signalling molecules, including receptors, adaptors, enzymes, and transcriptional factors. Finally, in this chapter, some remarks are made regarding profound changes in intracellular metabolic pathways in innate immune cells such as dendritic cells and macrophages that alter their function when getting activated to execute effector responses. As a typical metabolic modification, the shift from mitochondrial oxidative phosphorylation in resting innate immune cells to aerobic glycolysis in activated cells is particularly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu J, Qian C, Cao X. Post-translational modification control of innate immunity. Immunity. 2016;45:15–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27438764

    Article  Google Scholar 

  2. Smale ST, Tarakhovsky A, Natoli G. Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol. 2014;32:489–511. Available from: http://www.annualreviews.org/doi/10.1146/annurev-immunol-031210-101303

    Article  CAS  Google Scholar 

  3. Álvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2015;15:7–17. Available from: http://www.nature.com/doifinder/10.1038/nri3777

    Article  Google Scholar 

  4. Waterland RA. Epigenetic mechanisms and gastrointestinal development. J Pediatr. 2006;149:S137–42. Available from: http://linkinghub.elsevier.com/retrieve/pii/S002234760600624X

    Article  CAS  Google Scholar 

  5. Schreiber J, Jenner RG, Murray HL, Gerber GK, Gifford DK, Young RA. Coordinated binding of NF-kappaB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci U S A. 2006;103:5899–904. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0510996103

    Article  CAS  PubMed Central  Google Scholar 

  6. Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity (Edinb). 2010;105:4–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20461105

    Article  CAS  Google Scholar 

  7. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25693563

    Article  CAS  PubMed Central  Google Scholar 

  8. Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 2014;1839:627–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24631868

    Article  CAS  PubMed Central  Google Scholar 

  9. Wei J-W, Huang K, Yang C, Kang C-S. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2016;37:3–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27841002

    Article  Google Scholar 

  10. Moosavi A, Motevalizadeh Ardekani A. Role of epigenetics in biology and human diseases. Iran Biomed J. 2016;20:246–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27377127

    PubMed  PubMed Central  Google Scholar 

  11. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500. Available from: http://www.nature.com/doifinder/10.1038/nrg.2016.59

    Article  CAS  Google Scholar 

  12. Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol. 2015;35:68–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26496625

    Article  CAS  PubMed Central  Google Scholar 

  13. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3. Available from: http://genesdev.cshlp.org/cgi/doi/10.1101/gad.1787609

    Article  CAS  PubMed Central  Google Scholar 

  14. Kreuz S, Fischle W. Oxidative stress signaling to chromatin in health and disease. Epigenomics. 2016;8:843–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27319358

    Article  CAS  PubMed Central  Google Scholar 

  15. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol. 2015;16:144–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25650801

    Article  CAS  PubMed Central  Google Scholar 

  16. Hoeksema MA, de Winther MPJ. Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal. 2016;25:758–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26983461

    Article  CAS  PubMed Central  Google Scholar 

  17. Ghisletti S, Natoli G. Deciphering cis-regulatory control in inflammatory cells. Philos Trans R Soc B Biol Sci. 2013;368:20120370. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23650641

    Article  Google Scholar 

  18. Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, et al. WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res. 2017;45:D264–70. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1011

    CAS  PubMed  Google Scholar 

  19. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 2010;32:317–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761310000786

    Article  CAS  Google Scholar 

  20. Busslinger M, Tarakhovsky A. Epigenetic control of immunity. Cold Spring Harb Perspect Biol. 2014;6:a019307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24890513

    Article  PubMed Central  Google Scholar 

  21. Mehta S, Jeffrey KL. Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunol Cell Biol. 2015;93:233–44. Available from: http://www.nature.com/doifinder/10.1038/icb.2014.101

    Article  CAS  PubMed Central  Google Scholar 

  22. Hennessy C, McKernan DP. Epigenetics and innate immunity: the “unTolld” story. Immunol Cell Biol. 2016;94:631–9. Available from: http://www.nature.com/doifinder/10.1038/icb.2016.24

    Article  CAS  Google Scholar 

  23. Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol. 2016;16:35–50. Available from: http://www.nature.com/doifinder/10.1038/nri.2015.8

    Article  CAS  Google Scholar 

  24. Liu J, Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol. 2016;13:711–21. Available from: http://www.nature.com/doifinder/10.1038/cmi.2016.58

    Article  CAS  PubMed Central  Google Scholar 

  25. Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell. 2009;138:114–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867409004450

    Article  CAS  PubMed Central  Google Scholar 

  26. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung C-W, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:1119–23. Available from: http://www.nature.com/doifinder/10.1038/nature09589

    Article  CAS  PubMed Central  Google Scholar 

  27. Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M, et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell. 2012;47:810–22. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276512006570

    Article  CAS  Google Scholar 

  28. Zhang Y, Cao X. Long noncoding RNAs in innate immunity. Cell Mol Immunol. 2016;13:138–47. Available from: http://www.nature.com/doifinder/10.1038/cmi.2015.68

    Article  Google Scholar 

  29. Nishitsuji H, Ujino S, Yoshio S, Sugiyama M, Mizokami M, Kanto T, et al. Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression. Proc Natl Acad Sci U S A. 2016;113:10388–93. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1525022113

    Article  CAS  PubMed Central  Google Scholar 

  30. Li X, Zhang Q, Ding Y, Liu Y, Zhao D, Zhao K, et al. Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity. Nat Immunol. 2016;17:806–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27240213

    Article  CAS  Google Scholar 

  31. Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, et al. Bcl-6 and NF-kappaB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 2010;24:2760–5. Available from: http://genesdev.cshlp.org/cgi/doi/10.1101/gad.1998010

    Article  CAS  PubMed Central  Google Scholar 

  32. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276510003667

    Article  CAS  PubMed Central  Google Scholar 

  33. Schliehe C, Flynn EK, Vilagos B, Richson U, Swaminathan S, Bosnjak B, et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol. 2015;16:67–74. Available from: http://www.nature.com/doifinder/10.1038/ni.3046

    Article  CAS  Google Scholar 

  34. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22663078

    Article  CAS  Google Scholar 

  35. Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341:789–92. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1240925

    Article  CAS  PubMed Central  Google Scholar 

  36. Turner M, Galloway A, Vigorito E. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat Immunol. 2014;15:484–91. Available from: http://www.nature.com/doifinder/10.1038/ni.2887

    Article  CAS  Google Scholar 

  37. Atianand MK, Caffrey DR, Fitzgerald KA. Immunobiology of long noncoding RNAs. Annu Rev Immunol. 2017;35:177–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28125358

    Article  CAS  Google Scholar 

  38. Hu G, Gong A-Y, Wang Y, Ma S, Chen X, Chen J, et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol. 2016;196:2799–808. Available from: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1502146

    Article  CAS  PubMed Central  Google Scholar 

  39. Ma S, Ming Z, Gong A-Y, Wang Y, Chen X, Hu G, et al. A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages. FASEB J. 2017;31(3):1215–25. Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.201601056R

    Article  CAS  Google Scholar 

  40. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–26. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276509000707

    Article  CAS  PubMed Central  Google Scholar 

  41. Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell. 2014;25:169–83. Available from: http://www.molbiolcell.org/cgi/doi/10.1091/mbc.E13-09-0558

    Article  PubMed Central  Google Scholar 

  42. Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell. 2014;53:393–406. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276514000410

    Article  CAS  Google Scholar 

  43. Netea MG, Quintin J, van der Meer JWM. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9:355–61. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312811001284

    Article  CAS  Google Scholar 

  44. Netea MG, Latz E, Mills KHG, O’Neill LAJ. Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol. 2015;16:675–9. Available from: http://www.nature.com/doifinder/10.1038/ni.3178

    Article  CAS  Google Scholar 

  45. Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:aaf1098. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27102489

    Article  PubMed Central  Google Scholar 

  46. Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12:223–32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312812002326

    Article  CAS  Google Scholar 

  47. Crisan TO, Netea MG, Joosten LAB. Innate immune memory: implications for host responses to damage-associated molecular patterns. Eur J Immunol. 2016;46:817–8. https://doi.org/10.1002/eji.201545497.

    Article  CAS  PubMed  Google Scholar 

  48. Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis. 2011;204:245–52. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jir240

    Article  CAS  Google Scholar 

  49. Biering-Sørensen S, Aaby P, Napirna BM, Roth A, Ravn H, Rodrigues A, et al. Small randomized trial among low-birth-weight children receiving bacillus Calmette-Guérin vaccination at first health center contact. Pediatr Infect Dis J. 2012;31:306–8. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00006454-201203000-00021

    Article  Google Scholar 

  50. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007;447:326–9. Available from: http://www.nature.com/doifinder/10.1038/nature05762

    Article  CAS  Google Scholar 

  51. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Ifrim DC, Saeed S, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109:17537–42. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1202870109

    Article  CAS  PubMed Central  Google Scholar 

  52. Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanirefah A, Matarese F, et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science. 2014;345:1251086. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25258085

    Article  PubMed Central  Google Scholar 

  53. Fan H, Cook JA. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res. 2004;10:71–84. Available from: http://www.ingentaselect.com/rpsv/cgi-bin/cgi?ini=xref&body=linker&reqdoi=10.1179/096805104225003997

    Article  CAS  Google Scholar 

  54. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447:972–8. Available from: http://www.nature.com/doifinder/10.1038/nature05836

    Article  CAS  Google Scholar 

  55. Ifrim DC, Quintin J, Joosten LAB, Jacobs C, Jansen T, Jacobs L, et al. Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clin Vaccine Immunol. 2014;21:534–45. Available from: http://cvi.asm.org/cgi/doi/10.1128/CVI.00688-13

    Article  PubMed Central  Google Scholar 

  56. Burgess SL, Buonomo E, Carey M, Cowardin C, Naylor C, Noor Z, et al. Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis. MBio. 2014;5:e01817. Available from: http://mbio.asm.org/lookup/doi/10.1128/mBio.01817-14

    Article  CAS  PubMed Central  Google Scholar 

  57. Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345:1250684. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25258083

    Article  PubMed Central  Google Scholar 

  58. Lamb DJ, Eales LJ, Ferns GA. Immunization with bacillus Calmette-Guerin vaccine increases aortic atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1999;143:105–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10208485

    Article  CAS  Google Scholar 

  59. Land WG. The role of damage-associated molecular patterns (DAMPs) in human diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J. 2015;15:e157–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26052447

    PubMed  PubMed Central  Google Scholar 

  60. Bekkering S, Quintin J, Joosten LAB, van der Meer JWM, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol. 2014;34:1731–8. Available from: http://atvb.ahajournals.org/cgi/doi/10.1161/ATVBAHA.114.303887

    Article  CAS  Google Scholar 

  61. Crisan TO, Cleophas MCP, Oosting M, Lemmers H, Toenhake-Dijkstra H, Netea MG, et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis. 2016;75:755–62. Available from: http://ard.bmj.com/lookup/doi/10.1136/annrheumdis-2014-206564

    Article  Google Scholar 

  62. Valdés-Ferrer SI, Rosas-Ballina M, Olofsson PS, Lu B, Dancho ME, Li J, et al. High-mobility group box 1 mediates persistent splenocyte priming in sepsis survivors. Shock. 2013;40:492–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24089009

    Article  PubMed Central  Google Scholar 

  63. Netea MG, van der Meer JWM. Trained immunity: an ancient way of remembering. Cell Host Microbe. 2017;21:297–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28279335

    Article  CAS  Google Scholar 

  64. Rogers LD, Overall CM. Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol Cell Proteomics. 2013;12:3532–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23887885

    Article  CAS  PubMed Central  Google Scholar 

  65. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell. 1997;91:443–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9390553

    Article  CAS  Google Scholar 

  66. Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17:666–72. Available from: http://www.nature.com/doifinder/10.1038/nsmb.1842

    Article  CAS  Google Scholar 

  67. Mowen KA, David M. Unconventional post-translational modifications in immunological signaling. Nat Immunol. 2014;15:512–20. Available from: http://www.nature.com/doifinder/10.1038/ni.2873

    Article  CAS  Google Scholar 

  68. Potempa J. Posttranslational modifications in Innate immunity. J Innate Immun. 2012;4:119–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22286943

    Article  Google Scholar 

  69. Chiang C, Gack MU. Post-translational control of intracellular pathogen sensing pathways. Trends Immunol. 2017;38:39–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27863906

    Article  CAS  Google Scholar 

  70. Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24655297

    Article  CAS  Google Scholar 

  71. Seo GJ, Yang A, Tan B, Kim S, Liang Q, Choi Y, et al. Akt kinase-mediated checkpoint of cGAS DNA sensing pathway. Cell Rep. 2015;13:440–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124715010189

    Article  CAS  PubMed Central  Google Scholar 

  72. Shu H-B, Wang Y-Y. Adding to the STING. Immunity. 2014;41:871–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25526298

    Article  CAS  Google Scholar 

  73. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010;33:765–76. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761310003997

    Article  CAS  Google Scholar 

  74. Zhang J, Hu M-M, Wang Y-Y, Shu H-B. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem. 2012;287:28646–55. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M112.362608

    Article  CAS  PubMed Central  Google Scholar 

  75. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115:4742–9. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2009-10-249540

    Article  CAS  PubMed Central  Google Scholar 

  76. McGettrick AF, O’Neill LAJ. How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 2013;288:22893–8. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.R113.486464

    Article  CAS  PubMed Central  Google Scholar 

  77. Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15:323–32. Available from: http://www.nature.com/doifinder/10.1038/ni.2833

    Article  CAS  PubMed Central  Google Scholar 

  78. Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15:18–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25534620

    Article  CAS  PubMed Central  Google Scholar 

  79. O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16:553–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27396447

    Article  PubMed Central  Google Scholar 

  80. O’Neill L. Immunometabolism and the land of milk and honey. Nat Rev Immunol. 2017;17:217. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28287105

    Article  Google Scholar 

  81. Langston PK, Shibata M, Horng T. Metabolism supports macrophage activation. Front Immunol. 2017;8:61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28197151

    Article  PubMed Central  Google Scholar 

  82. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496:238–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23535595

    Article  CAS  PubMed Central  Google Scholar 

  83. Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 2015;42:419–30. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761315000801

    Article  CAS  Google Scholar 

  84. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19872213

    Article  CAS  PubMed Central  Google Scholar 

  85. Xu J, Li J, Yu Z, Rao H, Wang S, Lan H. HMGB1 promotes HLF-1 proliferation and ECM production through activating HIF1-α-regulated aerobic glycolysis. Pulm Pharmacol Ther. 2017;45:136–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28571757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Land, W.G. (2018). Regulation of Innate Inflammatory Responses. In: Damage-Associated Molecular Patterns in Human Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-78655-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78655-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78654-4

  • Online ISBN: 978-3-319-78655-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics