Skip to main content

Cellulose Solubility, Gelation, and Absorbency Compared with Designed Synthetic Polymers

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 4564 Accesses

Abstract

Swelling and solubility of polymers, and in particular cellulose, are controlled by interactions, molecular symmetry, chain flexibility, and order/disorder. Theory is used to explain and predict which liquid systems, polymer structures, and chemical modifications form gels and polymer solutions. Extension of these principles leads to super-absorbent polymers. Cellulose is not water soluble, though some water systems can dissolve cellulose, particularly alkaline or strongly hydrogen-bonding solutions. Less hydrophilic derivatives such as methyl cellulose dissolve in water; while with increasing substitution with methyl groups, cellulose becomes soluble in organic solvents such as dichloromethane. Sometimes temperature can enhance solubility or gelation; alternatively adjusting chemistry through functional group modification to reach an optimum between intermolecular versus solvation interactions will create exceptional changes in absorbency. The solvation power can be increased by adding strongly ionic, hydrogen bonding or acid–base solutes such as lithium chloride, urea, or sodium hydroxide. Synthetic polymers have been designed and commercialized with specific solubility, solution rheology, gelation, and absorbency for many applications. Synthetic water-absorptive polymers begin with the choice of monomer(s), molar mass, and chain architecture. Cellulose is separated with exact structure that can be derivatized, grafted, or modified to change its native resistance to super-absorbency, gelation, or dissolving in water. Molecular modeling and simulation are used to evaluate parameters that will describe super-absorbent character. This review explores and evaluates the chemistry and structural symmetry of celluloses and synthetic polymers, leading to solubility, and gelation leading to super-absorbency. Cellulose is emphasized and compared with synthetic polymers where chemistries are designed and created at all levels of structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouajai S, Shanks RA (2006) Solvent and enzyme induced recrystallization of mechanically degraded hemp cellulose. Cellulose 13(1):31–44

    Article  CAS  Google Scholar 

  2. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451–477

    CAS  Google Scholar 

  3. Chuang L, Panyoyai N, Shanks RA, Kasapis S (2017) Effect of salt on the glass transition of condensed tapioca starch systems. Food Chem 229:120–126

    Article  CAS  Google Scholar 

  4. Shanks RA (2016) Processing cellulose for cellulose fiber and matrix composites. In: Thakur VK (ed) Green composites from natural resources. CRC Press/Taylor and Francis Group, Boca Raton, pp 45–62

    Google Scholar 

  5. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373

    Article  CAS  Google Scholar 

  6. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206

    Article  CAS  Google Scholar 

  7. Piltonen P, Hildebrandt NC, Westerlind B, Valkama J-P, Tervahartiala T, Illikainen M (2016) Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent. Comp Sci Tech 135:153–158

    Article  CAS  Google Scholar 

  8. Changa C, Zhanga L, Zhoua J, Zhanga L, Kennedy JF (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  Google Scholar 

  9. Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52:387–400

    Article  CAS  Google Scholar 

  10. Lin Y-H, Chou N-K, Chen K-F, Ho G-H, Chang C-H, Wang S-S, Chu S-H, Hsieh K-H (2007) Effect of soft segment length on properties of hydrophilic/hydrophobic polyurethanes. Polym Int 56(11):1415–1422

    Article  CAS  Google Scholar 

  11. Koch K, Barthlott W (2009) Superhydrophilic and superhydrophobic plant surfaces: an inspiration for biomimetic materials. Phil Trans R Soc A 367:1487–1509

    Article  CAS  Google Scholar 

  12. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53

    Article  CAS  Google Scholar 

  13. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100

    Article  CAS  Google Scholar 

  14. Ma Z, Li Q, Yue Q, Gao B, Xu X, Zhong Q (2011) Synthesis and characterization of a novel super-absorbent based on wheat straw. Bioresour Tech 102(3):2853–2858

    Article  CAS  Google Scholar 

  15. Mandal B, Rameshbabu AP, Dhara S, Pal S (2017) Nanocomposite hydrogel derived from poly (methacrylic acid)/carboxymethyl cellulose/AuNPs: a potential transdermal drugs carrier. Polymer 120:9–19

    Article  CAS  Google Scholar 

  16. Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99(6):3251–3256

    Article  CAS  Google Scholar 

  17. Ouajai S, Hodzic A, Shanks RA (2004) Morphological and grafting modification of natural cellulose fibers. J Appl Polym Sci 94(6):2456–2465

    Article  CAS  Google Scholar 

  18. Liu H, Chaudhary D, Ingram G, John J (2011) Interactions of hydrophilic plasticizer molecules with amorphous starch biopolymer – an investigation into the glass transition and the water activity behavior. J Polym Sci B Polym Phys 49(14):1041–1049

    Article  CAS  Google Scholar 

  19. Veiga-Santos P, Oliveira LM, Cereda MP, Alves AJ, Scamparini ARP (2004) Mechanical properties, hydrophilicity and water activity of starch-gum films: effect of additives and deacetylated xanthan gum. Food Hydrocoll 19(2):341–349

    Article  Google Scholar 

  20. Zhang J, Wang L, Wang A (2007) Preparation and properties of chitosan-g-poly(acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization. Ind Eng Chem Res 46:2497–2502

    Article  CAS  Google Scholar 

  21. Korpe S, Erdoğan B, Bayram G, Ozgen S, Uludag Y, Bicak N (2009) Crosslinked DADMAC polymers as cationic super absorbents. React Funct Polym 69(9):660–665

    Article  CAS  Google Scholar 

  22. Littunen K, Snoei de Castro J, Samoylenko A, Xu Q, Quaggin S, Vainio S, Seppälä J (2016) Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties. Eur Polym J 75:116–124

    Article  CAS  Google Scholar 

  23. Tai NL, Adhikari R, Shanks R, Adhikari B (2017) Flexible starch-polyurethane films: physiochemical characteristics and hydrophobicity. Carbohydr Polym 163:236–246

    Article  CAS  Google Scholar 

  24. Yanga L, Yangb Y, Chena Z, Guoc C, Li S (2014) Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol Eng 62:27–32

    Article  Google Scholar 

  25. Kravtzov R, Betbeder D, Davrinche C, Vaz Santiago J, Lule J (2002) Use of hydrophilic particles associated with antigens for preparing vaccine compositions. PCT Int. Appl. Wo, (Biovector Therapeutics, Fr.; Institut National de la Sante et de la Recherche Medicale (INSERM)), p 47

    Google Scholar 

  26. Panyoyai N, Shanks RA, Kasapis S (2017) Tocopheryl acetate release from microcapsules of waxy maize starch. Carbohydr Polym 167:27–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I R M Pardo thanks CONACYT, Mexico, for a PhD scholarship. Molecular structures and modeling were performed using ChemDraw, Chem3D, and CSIRO that are acknowledged for some models for which Materials Studio was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Shanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shanks, R.A., Pardo, I.R.M. (2019). Cellulose Solubility, Gelation, and Absorbency Compared with Designed Synthetic Polymers. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_7

Download citation

Publish with us

Policies and ethics