Skip to main content

Applications of Haptic Systems in Virtual Environments: A Brief Review

  • Chapter
  • First Online:
Advanced Topics on Computer Vision, Control and Robotics in Mechatronics

Abstract

Haptic systems and virtual environments represent two innovative technologies that have been attractive for the development of applications where the immersion of the user is the main concern. This chapter presents a brief review about applications of haptic systems in virtual environments. Virtual environments will be considered either virtual reality (VR) or augmented reality (AR) by their virtual nature. Even if AR is usually considered an extension of VR, since most of the augmentations of reality are computer graphics, the nature of AR is also virtual and will be taken as a virtual environment. The applications are divided in two main categories, training and assistance. Each category has subsections for the use of haptic systems in virtual environments in education, medicine, and industry. Finally, an alternative category of entertainment is also discussed. Some representative research on each area of application is described to analyze and to discuss which are the trends and challenges related to the applications of haptic systems in virtual environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidi, M., Ahmad, A., Darmoul, S., & Al-Ahmari, A. (2015). Haptics assisted virtual assembly. IFAC-PapersOnLine, 48(3), 100–105.

    Article  Google Scholar 

  • ACM, Inc. (2017). ACM digital library. Retrieved from http://dl.acm.org/.

  • Aleotti, J., Micconi, G., & Caselli, S. (2016). Object interaction and task programming by demonstration visuo-haptic augmented reality. Multimedia Systems, 22(6), 675–691.

    Article  Google Scholar 

  • Asque, C., Day, A., & Laycock, S. (2014). Augmenting graphical user interfaces with haptic assistance for motion-impaired operators. International Journal of Human-Computer Studies, 72, 689–703.

    Article  Google Scholar 

  • Atif, A., & Saddik, A. E. (2010). AR-REHAB: An augmented reality framework for poststroke-patient rehabilitation. IEEE Transactions on Instrumentation and Measurement, 59(10), 1–10.

    Article  Google Scholar 

  • Bau, O., & Poupyrev, I. (2012). REVEL: Tactile feedback technology for augmented reality. ACM Transactions on Graphics, 89, 1–11.

    Article  Google Scholar 

  • Carlson, P., Vance, J., & BergNee, M. (2016). An evaluation of asymmetric interfaces for bimanual virtual assembly with haptics. Virtual Reality, 20(4), 193–201.

    Article  Google Scholar 

  • Chowriappa, A., Raza, S., Fazili, A., Field, E., Malito, C., Samarasekera, D., et al. (2015). Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: A multi-institutional randomised controlled trial. BJU International, 115(2), 336–345.

    Article  Google Scholar 

  • Craig, A. B. (2013). Understanding augmented reality: Concepts and applications. Newnes.

    Chapter  Google Scholar 

  • Csongei, M., Hoang, L., Eck, U., & Sandor, C. (2012). ClonAR: Rapid redesign of real-world objects. IEEE International Symposium on Mixed and Augmented Reality, 277–278.

    Google Scholar 

  • CyberGlove Systems Inc. (2017). Overview. Retrieved from http://www.cyberglovesystems.com/cybergrasp/.

  • Díaz, I., Gil, J., & Louredo, M. (2014). A haptic pedal for surgery assistance. Computer Methods and Programs in Biomedicine, 116(2), 97–104.

    Article  Google Scholar 

  • Eck, U., & Sandor, C. (2013). HARP: A framework for visuo-haptic augmented reality. IEEE Virtual Reality, 145–146.

    Google Scholar 

  • Elsevier B.V. (2017). Explore scientific, technical, and medical research on sciencedirect. Retrieved from http://www.sciencedirect.com/.

  • Emerald Publishing. (2017). Discover new things. Retrieved from http://www.emeraldinsight.com/.

  • Engineering Acoustics Inc. (2017). C2-HDLF. Retrieved from https://www.eaiinfo.com/product/c2-lf/.

  • Faulhaber Group. (2017). DC-micromotors series 0615…S. Retrieved from https://www.faulhaber.com/en/products/series/0615s/.

  • FLIR Integrated Imaging Solutions, Inc. (2017). Bumblebee2 1394a. Retrieved from https://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems.

  • Force Dimension. (2017). Omega.3. Retrieved from http://www.forcedimension.com/products/omega-3/overview.

  • Han, G., Lee, J., Lee, I., & Choi, S. (2010). Effects of kinesthetic information on working memory for 2D sequential selection task. IEEE Haptics Symposium, 43–46.

    Google Scholar 

  • Han, I., & Black, J. (2011). Incorporating haptic feedback in simulation for learning physics. Computers and Education, 2281–2290.

    Article  Google Scholar 

  • Haption SA. (2017). Virtuose 6D. Retrieved from https://www.haption.com/site/index.php/en/products-menu-en/hardware-menu-en/virtuose-6d-menu-en.

  • Hassan, S., & Yoon, J. (2010). Haptic based optimized path planning approach to virtual maintenance assembly/disassembly (MAD). In The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1310–1315). Taipei, Taiwan: IEEE.

    Google Scholar 

  • Hayward, V., Astley, O., Cruz-Hernandez, M., Grant, D., & Robles-De-La-Torre, G. (2004). Haptic interfaces and devices. Sensor Review, 24, 16–29.

    Article  Google Scholar 

  • IEEE. (2017). IEEE Xplore digital library. Retrieved from http://ieeexplore.ieee.org/Xplore/home.jsp.

  • Invitto, S., Faggiano, C., Sammarco, S., Luca, V., & Paolis, L. (2016). Haptic, virtual interaction and motor imagery: Entertainment tools and psychophysiological testing. Sensors, 16(3), 1–17.

    Article  Google Scholar 

  • Israr, A., Zhao, S., Schwalje, K., Klatzky, R., & Lehman, J. (2014). Feel effects: Enriching storytelling with haptic feedback. ACM Transactions on Applied Perception, 11(3), 1–14.

    Article  Google Scholar 

  • Lecuyer, A., Burkhardt, J.-M., & Tan, C.-H. (2008). A study of the modification of the speed and size of the cursor for simulating pseudo-haptic bumps and holes. ACM Transactions on Applied Perception, 5(13), 1–32.

    Article  Google Scholar 

  • Li, M., Sareh, S., Xu, G., Ridzuan, M., Luo, S., Xie, J., et al. (2016). Evaluation of pseudo-haptic interactions with soft objects in virtual environments. PLoS One, 11(6), 1–17.

    Google Scholar 

  • Lin, Y., Wang, X., Wu, F., Chen, X., Wang, C., & Shen, G. (2014). Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. Journal of Biomedical Informatics, 48, 122–129.

    Article  Google Scholar 

  • Lin, M., & Otaduy, M. (2008). Haptic rendering foundations, algorithms, and applications. A K Peters.

    Google Scholar 

  • Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174–187.

    Article  Google Scholar 

  • Luo, Q., & Xiao, J. (2004). Physically accurate haptic rendering with dynamic effects. IEEE Computer Graphics and Applications, 24(6), 60–69.

    Article  Google Scholar 

  • Magnenat-Thalmann, N., Montagnol, M., Bonanni, U., & Gupta, R. (2007). Visuo-haptic interface for hair. In International Conference on Cyberworlds, 3–12.

    Google Scholar 

  • Medellín-Castillo, H., Govea-Valladare, E., Pérez-Guerrero, C., Gil-Valladaresc, J., Limd, T., & Ritchie, J. (2016). The evaluation of a novel haptic-enabled virtual reality approach for computer-aided cephalometry. Computer methods and programs in biomedicine, 130(C), 46–53.

    Article  Google Scholar 

  • Microsoft. (2017, March). Kinect fusion. Retrieved from https://msdn.microsoft.com/en-us/library/dn188670.aspx.

  • Murphy, K., & Darrah, M. (2015). Haptics-based apps for middle school students with visual impairments. IEEE Transactions on Haptics, 8(3), 318–326.

    Article  Google Scholar 

  • Ni, D., Yew, A., Ong, S., & Nee, A. (2017). Haptic and visual augmented reality interface for programming welding robots. Advanced Manufacturing, 5(3), 191–198.

    Article  Google Scholar 

  • Neupert, C., Matich, S., Scherping, N., Kupnik, M., Werthscheutzky, R., & Hatzfeld, C. (2016). Pseudo-haptic feedback in teleoperation. IEEE Transactions on Haptics, 9(3), 397–408.

    Article  Google Scholar 

  • Novint. (2017, March). Falcon technical specifications. Retrieved from http://www.novint.com/index.php/novintxio/41.

  • Ogata, K. (1998). Ingeniería de Control Moderna. Pearson Educación.

    Google Scholar 

  • Ouarti, N., Lécuyery, A., & Berthozz, A. (2014). Haptic motion: Improving sensation of self-motion in virtual worlds with force feedback. IEEE Haptics Symposium, 167–174.

    Google Scholar 

  • Oxford University Press. (2017). English oxford living dictionaries. Retrieved from https://en.oxforddictionaries.com/.

  • Pacchierotti, C., Prattichizzo, D., & Kuchenbecker, K. (2016, February). Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Transactions on Biomedical Engineering, 63(2), 278–287.

    Article  Google Scholar 

  • Pacchierotti, C., Tirmizi, A., & Prattichizzo, D. (2014). Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Transactions on Applied Perception, 11(1), 1–16.

    Article  Google Scholar 

  • Punpongsanon, P., & Kosuke, S. (2015). SoftAR: Visually manipulating haptic softness perception in spatial augmented reality. IEEE Transactions on Visualization and Computer Graphics, 21(11), 1279–1288.

    Article  Google Scholar 

  • Polhemus. (2017). FASTRAK. Retrieved from http://polhemus.com/motion-tracking/all-trackers/fastrak.

  • Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrovic, V., et al. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327.

    Article  Google Scholar 

  • Rhienmora, P., Gajananan, K., Haddawy, P., Dailey, M., & Suebnukarn, S. (2010). Augmented reality haptics system for dental surgical skills training. In VRST10 Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology (pp. 97–98).

    Google Scholar 

  • Ricciardi, F., & Paolis, L. (2014). A comprehensive review of serious games in health professions. International Journal of Computer Games Technology, 1–14.

    Article  Google Scholar 

  • Rolland, J., Davis, L., & Baillot, Y. (2001). Survey of tracking technology for virtual environments. In W. Barfield, & T. Caudell (Eds.), Fundamentals of wearable computers and augmented reality (p. 836). CRC Press.

    Google Scholar 

  • Sensable Technologies. (2016a). Geomagic phantom premium haptic devices. (Geomagic, Editor) Retrieved from http://www.geomagic.com/es/products/phantom-premium/overview/.

  • Sensable Technologies. (2016b). Phantom desktop haptic device. Retrieved from http://www.geomagic.com/archives/phantom-desktop/specifications/.

  • Sensable Technologies. (2016c). Phantom omni haptic device. (Geomagic, Editor) Retrieved from http://www.geomagic.com/archives/phantom-omni/specifications/.

  • SenseGraphics AB. (2012). What is H3DAPI. Retrieved from http://www.h3dapi.org/.

  • Skulmowski, A., Pradel, S., Kühnert, T., Brunnett, G., & Rey, G. (2016). Embodied learning using a tangible user interface: The effects of haptic perception and selective pointing on a spatial learning task. Computers and Education, 92(C), 64–75.

    Article  Google Scholar 

  • Sodhi, R., Poupyrev, I., Glisson, M., & Israr, A. (2013). AIREAL: Interactive tactile experiences in free air. ACM Transactions on Graphics, 134(1–134), 10.

    Google Scholar 

  • Spacemice. (2017). Spaceball 5000. Retrieved from http://spacemice.org/index.php?title=Spaceball_5000.

  • Tsirlin, I., Dupierrix, E., Chokron, S., Ohlmann, T., & Coquillart, S. (2010). Multimodal virtual reality application for the study of unilateral spatial neglect. IEEE Virtual Reality, 127–130.

    Google Scholar 

  • Virtual Realities, LLC. (2017). 5DT data glove 5 ultra. Retrieved from https://www.vrealities.com/products/data-gloves/5dt-data-glove-5-ultra-2–2.

  • Volunteer Development 4H-CLUB-100. (2016). 4H.VOL.115 learning Styles_2016: Retrieved from http://4h.okstate.edu/literature-links/ lit-online/others/volunteer/4H.VOl.115%20learning%20Styles_08.pdf/.

  • VUZIX. (2017). VUZIX, view the future. Retrieved from https://www.vuzix.com/.

  • Xia, P., Lopes, A., Restivo, M., & Yao, Y. (2012). A new type haptics-based virtual environment system for assembly training of complex products. International Journal of Advanced Manufacturing and Technology, 58(1–4), 379–396.

    Article  Google Scholar 

  • Yamamoto, T., Abolhassani, N., Jung, S., Okamura, A., & Judkins, T. (2012). Augmented reality and haptic interfaces for robot-assisted surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 8(1), 45–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma G. Rodríguez Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez Ramírez, A.G., García Luna, F.J., Vergara Villegas, O.O., Nandayapa, M. (2018). Applications of Haptic Systems in Virtual Environments: A Brief Review. In: Vergara Villegas, O., Nandayapa , M., Soto , I. (eds) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-319-77770-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77770-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77769-6

  • Online ISBN: 978-3-319-77770-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics