Skip to main content

Devices for a Rotational Ground Motion Measurement

  • Chapter
  • First Online:
Moment Tensor Solutions

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

  • 1524 Accesses

Abstract

Generally, a rotational ground motion can be induced by earthquakes, explosions, and ambient vibrations. From the above point of view, it is interesting for a study concerning the area of rotational seismology (Lee et al. 2009a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovich JA, Kharlamov AV (2001) Electrochemical transducer and a method for fabricating the same. Electrochemical sensors transducer. US Patent US6,576,103 B2, 8 Aug 2001

    Google Scholar 

  • Anderson JG (2003) Strong-motion seismology. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) The international handbook of earthquake and engineering seismology, part B, 1st edn. Academic Press, Amsterdam, pp 937–965

    Chapter  Google Scholar 

  • Aronowitz F (1971) The laser gyro. In: Ross M (ed) Laser applications, vol 1. Academic Press, New York, pp 133–200

    Google Scholar 

  • AST LLC (2016) Rotational seismometers R-2, R3. In: Data sheet presented at the 4th international working group on rotational seismology meeting, Tutzing, 20–23 June 2016

    Google Scholar 

  • Bernauer F, Wassermann J, Igel H (2012) Rotational sensors—a comparison of different sensor types. J Seismol 16:595–602

    Article  Google Scholar 

  • Bernauer F, Wassermann J, Guattari F, Igel H (2016) Testing a prototype broadband fiber-optic gyro. In: Proceeding of the 4th international working group on rotational seismology meeting, Tutzing, 20–23 June 2016. http://www.rotational-seismology.org/events/workshops/Presentations_2016/presentations/Bernauer_talk. Accessed 10 Aug 2016

  • Bodin P, Gomberg J, Singha SK, Santoyo M (1997) Dynamic deformations of shallow sediments in the Valley of Mexico, part 1: three dimensional strains and rotations recorded on a seismic array. Bull Seismol Soc Am 87:528–539

    Google Scholar 

  • Brokešová J (2014) Short-period seismic rotations and translations recorded by Rotaphone. Habilitation thesis. Department of Geophysics Faculty of Mathematics and Physics Charles University

    Google Scholar 

  • Brokešová J, Málek J (2015) Six-degree-of-freedom near-source seismic motions II: examples of real seismogram analysis and S-wave velocity retrieval. J Seismol 19:511–539

    Article  Google Scholar 

  • Brokešová J, Málek J, Štrunc J (2009) Rotational seismic sensor system, seismic measuring set containing that system, and seismic survey method. Czech Republic Patent CZ301217 B6, 8 Dec 2009

    Google Scholar 

  • Brokešová J, Málek J (2010) New portable sensor system for rotational seismic motion measurements. Rev Sci Instrum 81:084501

    Article  Google Scholar 

  • Brokešová J, Málek J, Evans JR (2012a) Rotaphone, a new self-calibrated six-degree-of-freedom seismic sensor. Rev Sci Instrum 83:086108

    Article  Google Scholar 

  • Brokešová J, Málek J, Kolínský P (2012b) Rotaphone, a mechanical seismic sensor system for field rotation rate measurements and its in situ calibration. J Sesimol 16:603–621

    Article  Google Scholar 

  • Brokešová J, Málek J (2013) Rotaphone, a self-calibrated six-degree-of-freedom seismic sensor and its strong-motion records. Seismol Res Lett 84:737–744

    Article  Google Scholar 

  • Brokešová J, Málek J, Evans JR (2016) Rotaphone-D—a new six-degree-of freedom short-period seismic sensor: features, parameters, field records. In: Proceeding of the 4th international working group on rotational seismology meeting, Tutzing, 20–23 June 2016. http://www.rotational-seismology.org/events/workshops/Presentations_2016/presentations/Brokesova_talk. Accessed 10 Aug 2016

  • Carey SW (1983) Earth expansion and the null Universe. In: Carey SW (ed) Proceedings of the expanding earth symposium, Sydney, 1981, pp 365–372

    Google Scholar 

  • Cochard A, Igel H, Schuberth B, Suryanto W, Velikoseltsev A, Schreiber KU, Wassermann J, Scherbaum F, Vollmer D (2006) Rotation motions in seismology, theory, observation, simulation. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 391–412

    Chapter  Google Scholar 

  • Droste Z, Teisseyre R (1976) Rotational and displacemental components of ground motion as deduced from data of the azimuth system of seismographs. Pub Inst Geophys Polish Acad Sci 97:157–167

    Google Scholar 

  • Eentec (2016) High resolution rotational seismometer model R-1. http://www.eentec.com/R-1_data_new.htm. Accessed 7 Jul 2016

  • Evans JR, Igel HI, Knopftt L, Teng TI, Trifunac MD (2007) Rotational seismology and engineering—online proceedings for the first international workshop. US Geol Surv Open-File Rep 1144:36–37

    Google Scholar 

  • Farrell WE (1969) A gyroscope seismometer: measurements during the Borrego earthquake. Bull Seismol Soc Am 59:1239–1245

    Google Scholar 

  • Freescale Semiconductor Inc (2015) Allan variance: noise analysis for gyroscopes. Application Note AN5087 Rev. 0.2/2015

    Google Scholar 

  • Galitzin BB (1912) Lectures on seismometry. Russian Academy of Sciences, St. Petersburg, Russia (In Russian)

    Google Scholar 

  • Graizer VM (1991) Inertial seismometry methods. Izv USSR Acad Sci Phys Solid Earth 27:51–61

    Google Scholar 

  • Havskov J, Alguacil G (2016) Instrumentation in earthquake seismology, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Huang BS (2003) Ground rotational motions of the 1991 Chi-Chi, Taiwan earthquake as inferred from dense array observations. Geophys Res Lett 30:1307–1310

    Google Scholar 

  • Igel H, Brokesova J, Evans J, Zembaty Z (2012) Preface to the special issue on advances in rotational seismology: Instrumentation, theory, observations and engineering. J Seismol 16:571–572

    Article  Google Scholar 

  • iXBlue (2016) BlueSeis-3A rotational seismometer. In: Proceeding of the 4th international working group on rotational seismology meeting, Tutzing, 20–23 June 2016. http://www.rotational-seismology.org/events/workshops/Presentations_2016/Posters/Blueseis-3a. Accessed 10 Aug 2016

  • Jaroszewicz LR, Krajewski Z, Solarz L, Marć P, Kostrzyński T (2003) A new area of the fiber-optic Sagnac interferometer application. In: Proceedings of the international microwave and optoelectronics conference IMOC-2003, Iguazu Falls, 20–23 Sept 2003, pp 661–666

    Google Scholar 

  • Jaroszewicz LR, Krajewski Z, Solarz L, Teisseyre R (2005) Application of the FORS-II for investigation of the seismic rotation waves. Proc SPIE 5776:385–393

    Article  Google Scholar 

  • Jaroszewicz LR, Krajewski Z, Solarz L (2006a) Absolute rotation measurement based on the Sagnac effect. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 413–438

    Chapter  Google Scholar 

  • Jaroszewicz LR, Krajewski Z, Solarz L, Teisseyre R (2006b) Application of the fibre-optic Sagnac interferometer in the investigation of seismic rotational waves. Meas Sci Technol 17:1186–1193

    Article  Google Scholar 

  • Jaroszewicz LR, Krajewski Z, Kowalski H, Mazur G, Zinówko P, Kowalski J (2011) AFORS autonomous fibre-optic rotational seismograph: design and application. Acta Geophys 59:578–596

    Article  Google Scholar 

  • Jaroszewicz LR, Krajewski Z, Teisseyre KP (2012a) Usefulness of AFORS—autonomous fibre-optic rotational seismograph for investigation of rotational phenomena. J Seismol 16:573–586

    Article  Google Scholar 

  • Jaroszewicz LR, Krajewski Z, Teisseyre KP (2012b) Fibre-optic Sagnac interferometer as seismograph for direct monitoring of rotation events. In: D’Amico S (ed) Earthquake research and analysis: statistical studies, observations and planning. InTech Open Access Pub, Rijeka, pp 335–354

    Google Scholar 

  • Jaroszewicz LR, Kurzych A, Krajewski Z, Kowalski JK, Teisseyre KP (2015) FOSREM—fibre-optic system for rotational events and phenomena monitoring: construction, investigation and area of application. In: Zembaty Z, De Stefano M (eds) Seismic behaviour and design of irregular and complex civil structures II. Springer, Berlin, pp 49–64

    Google Scholar 

  • Jaroszewicz LR, Kurzych A, Krajewski Z, Marć P, Kowalski JK, Bobra P, Zembaty Z, Sakowicz B, Jankowski R (2016) Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16:2161

    Article  Google Scholar 

  • Ju L, Blair DG, Zhao C (2000) Detection of gravitational waves. Rep Prog Phys 63:1317–1427

    Article  Google Scholar 

  • Kalakan E, Graizer V (2007) Coupled tilt and translational ground motion response spectra. J Struct Eng 133:609–619

    Article  Google Scholar 

  • Kharin DA, Simonov LI (1969) VBPP seismometer for separate registration of translational motion and rotations. Seism Instrum 5:51–66 (In Russian)

    Google Scholar 

  • Kowalski JK, Jaroszewicz LR, Krajewski Z, Kurzych A, Marć P (2015) Measurement method and system for measuring amplitude of first two harmonics of signal derived from SAGNAC system. Patent PCT/IB2015/059521, 10 Dec 2015

    Google Scholar 

  • Kozák JT (2006) Development of earthquake rotational effect study. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 3–10

    Chapter  Google Scholar 

  • Kozák JT (2009) Tutorial on earthquake rotational effects: historical examples. Bull Seismol Soc Am 99:998–1010

    Article  Google Scholar 

  • Kurzych A, Jaroszewicz LR, Krajewski Z, Teisseyre KP, Kowalski JK (2014) Fibre optic system for monitoring rotational seismic phenomena. Sensors 14:5459–5469

    Article  Google Scholar 

  • Kurzych A, Kowalski JK, Sakowicz B, Krajewski Z, Jaroszewicz LR (2016) The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring. Opto-Electron Rev 24:134–143

    Article  Google Scholar 

  • Lantz B, Schofield R, O’Reilly B, Clark DE, DeBra D (2009) Review: requirements for a ground rotation sensor to improve advanced LIGO. Bull Seismol Soc Am 99:980–989

    Article  Google Scholar 

  • Lee WHK (2009) A glossary of rotational seismology. Bull Seismol Soc Am 99:1082–1090

    Article  Google Scholar 

  • Lee WHK, Celebi M, Todorovska M, Igel H (2009a) Introduction to the special issue on rotational seismology and engineering applications. Bull Seismol Soc Am 99:945–957

    Article  Google Scholar 

  • Lee WHK, Huang BS, Langston CA, Lin CJ, Liu CC, Shin TC, Teng TL, Wu CF (2009b) Review: Progress in rotational ground-motion observations from explosions and local earthquakes in Taiwan. Bull Seismol Soc Am 99:958–967

    Article  Google Scholar 

  • Lee WHK, Evans JR, Huang BS, Hut CR, Lin CJ, Liu CC, Nigbor RL (2012) Measuring rotational ground motions in seismological practice. In: Bormann P (ed) New manual of seismological observatory practice 2 (NMSOP-2). Deutsches GeoForschungs Zentrum GFZ, Potsdam, pp 1–27

    Google Scholar 

  • LeFevre HC (2014) The fiber optic gyroscope, 2nd edn. Artech House, Norwood

    Google Scholar 

  • Litef (2016) μFORS-36 m/-1 Fiber optic rate sensors. http://www.northropgrumman.litef.com/fileadmin/downloads/Datenblaetter/Datenblatt_uFors-36_-1.pdf. Accessed 2 Oct 2016

  • Majewski E (2009) Spinors and twistors in the description of rotational seismic waves and spin and twist solitons. Bull Seismol Soc Am 99:1137–1146

    Article  Google Scholar 

  • Mallet R (1862) Great Neapolitan earthquake of 1857: The first principles of observational seismology as developed in the report to the royal society of London of the expedition made by command of the society into the interior of the Kingdom of Naples to investigate the circumstances of the great earthquake of December 1857, vol 2. Chapman and Hall, London

    Google Scholar 

  • McGuire R (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct D 37:329–338

    Article  Google Scholar 

  • MGD (2016) Wraszczatelnyie Seismiczeskie Datcziki i MGD Obratnaia Swiaz. Accessed 1 Oct 2016

    Google Scholar 

  • Merkel A, Tournat V, Gusev V (2008) Experimental evidence of rotational elastic waves in granular photonic crystals. Phys Rev Lett 107:225502

    Article  Google Scholar 

  • Moriya T, Teisseyre R (2006) Design of rotation seismometer and non-linear behaviour of rotation components of earthquakes. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 439–450

    Chapter  Google Scholar 

  • Mustafa A (2015) Earthquake engineering—from engineering seismology to optimal seismic design of engineering structures. InTech, Rijeka

    Book  Google Scholar 

  • Newmark NM, Hall HJ (1969) Seismic design criteria for nuclear reactor facilities. In: B4 Proceedings of the 4th world conference on earthquake engineering, pp 37–50. Santiago

    Google Scholar 

  • Newmark NM, Rosenblueth E (1971) Fundamentals of earthquake engineering. Prentice Hall, New York

    Google Scholar 

  • Nigbor RL (1994) Six-degree-of-freedom ground motion measurement. Bull Seismol Soc Am 84:1665–1669

    Google Scholar 

  • Nigbor RL, Evans JR, Hutt ChR (2009) Laboratory and field testing of commercial rotational seismometers. Bull Seismol Soc Am 99:1215–1227

    Article  Google Scholar 

  • Nowożyński K, Teisseyre KP (2002) Time-domain filtering of seismic rotation waves. Acta Geophys Pol 51:51–61

    Google Scholar 

  • Olivera CS, Bolt BA (1989) Rotational components of surface strong ground motion. Earthq Eng Struct Dyn 18:517–526

    Article  Google Scholar 

  • Post EJ (1967) Sagnac effect. Rev Mod Phys 39:475–494

    Article  Google Scholar 

  • Rosenthal AH (1962) Regenerative circulatory multiple-beam interferometry for the study of light propagation effect. J Opt Soc Am 52:1143–1148

    Article  Google Scholar 

  • Rowe CH, Schreiber KU, Cooper SJ, King BT, Poulten M, Stedman GE (1999) Design and operation of a very large ring laser gyroscope. Appl Opt 38:2516–2523

    Article  Google Scholar 

  • Sagnac G (1913) L’ether lumineux demontre par l’effet du vent relatif d’Etherdanus un interferometre en rotation uniforme. C R Acad Sci 95:708–710 (In French)

    Google Scholar 

  • Schreiber KU, Schneider M, Rowe CH, Stedman GE, Schlüter W (2001) Aspects of ring lasers as local earth rotation sensors. Surv Geophys 22:603–611

    Article  Google Scholar 

  • Schreiber KU, Stedman GE, Igel H, Flaws A (2006) Ring laser gyroscopes as rotation sensors for seismic wave studies. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 377–390

    Chapter  Google Scholar 

  • Schreiber KU, Hautmann JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells JPR (2009a) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99:1190–1198

    Article  Google Scholar 

  • Schreiber KU, Velikoseltsev A, Carr AJ, Franco-Anaya R (2009b) The application of fiber optic gyroscope for measurement of rotations in structural engineering. Bull Seismol Soc Am 99:1207–1214

    Article  Google Scholar 

  • Skrzyński A (Institute of Geophysics PAS, Warsaw, Poland), Krajewski Z (Military University of Technology, Warsaw, Poland) (2016) The main parameters of the two antiparallel pendulum seismometers. Personal communication

    Google Scholar 

  • Solarz L, Krajewski Z, Jaroszewicz LR (2004) Analysis of seismic rotations detected by two antiparallel seismometers: spine function approximation of rotation and displacement velocities. Acta Geophys Pol 52:198–217

    Google Scholar 

  • Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1995) Transient stress at Parkfield, California produced by the M 7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J Geophys Res 100:675–690

    Article  Google Scholar 

  • Stedman GE (1997) Ring laser tests of fundamental physics and geophysics. Rep Progr Phys 60:615–688

    Article  Google Scholar 

  • Suryanto W, Igel H, Wassermann J, Cochard A, Schuberth B, Vollmer D, Scherbaum F, Schreiber U, Velikoseltsev A (2006) First comparison of array-derived rotational ground motions with direct ring laser measurements. Bull Seismol Soc Am 96:2059–2071

    Article  Google Scholar 

  • Systron (2016a) Horizon™ MEMS quartz angular rate sensor. http://www.systron.com/sites/default/files/964120_n-hz1.pdf. Accessed 10 Aug 2016

  • Systron (2016b) Horizon quartz MEMS technology. http://www.systron.com/support/technology. Accessed 17 Sept 2016

  • Systron (2016c) Horizon user’s guide. http://www.systron.com/sites/default/files/964013-rev_d_horizon_user_guide.pdf. Accessed 20 Aug 2016

  • Takeo M, Ueda H, Matzuzawa T (2009) Development of high-gain rotational-motion seismograph. Research grant 11354004, pp 5–29. Earthquake Research Institute, University of Tokyo, Tokyo

    Google Scholar 

  • Teisseyre R, Boratyński W (2002) Continuum with self-rotation nuclei: evolution of defect fields and equation of motion. Acta Geophys Pol 50:223–230

    Google Scholar 

  • Teisseyre R, Nagahama H (1999) Micro-inertia continuum: rotations and semi-waves. Acta Geophys Pol 47:259–272

    Google Scholar 

  • Teisseyre R (2002) Continuum with defect and self-rotation fields. Acta Geophys Pol 50:51–68

    Google Scholar 

  • Teisseyre R, Nagahama H, Majewski E (2008) Physics of asymmetric continuum: extreme and fracture process earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg

    Book  Google Scholar 

  • Teisseyre R, Suchcicki J, Teisseyre KP (2003a) Recording of seismic rotation waves: reliability analysis. Acta Geophys Pol 51:37–50

    Google Scholar 

  • Teisseyre R, Suchcicki J, Teisseyre KP, Wiszniowski J, Palangio P (2003b) Seismic rotation waves: basic elements of the theory and recordings. Ann Geophys 46:671–685

    Google Scholar 

  • Teisseyre R, Takeo M, Majewski E (2006) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg

    Book  Google Scholar 

  • Trifunac MD (1979) A note on surface strains associated with incident body waves. Bull Eur Assoc Earthq Eng 5:85–95

    Google Scholar 

  • Trifunac MD (1982) A note on rotational components of earthquake motions on ground surface for incident body waves. Soil Dyn Earthq Eng 1:11–19

    Google Scholar 

  • Trifunac MD (2006) Effects of torsional and rocking excitations on the response of structures. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 569–582

    Chapter  Google Scholar 

  • Trifunac MD (2009) Review: rotations in structural response. Bull Seismol Soc Am 99:968–979

    Article  Google Scholar 

  • University of Munich (2016) Presentation on seismotectonics from the department of geophysics. http://www.geophysik.uni-muenchen.de/~igel/Lectures/Sedi/sedi_tectonics.ppt. Accessed 10 Aug 2016

  • Vali V, Shorthill RW (1976) Fiber ring interferometer. Appl Opt 15:1099–1100

    Article  Google Scholar 

  • Wang H, Igel H, Gallovič F, Cochard A (2009) Source and basin effects on rotational ground motions: comparison with translations. Bull Seismol Soc Am 99:1162–1173

    Article  Google Scholar 

  • Wassermann J, Lehndorfer S, Igel H, Schreiber U (2009) Performance test of a commercial rotational motions sensor. Bull Seismol Soc Am 99:1449–1456

    Article  Google Scholar 

  • Widmer-Schnidrig R, Zurm W (2009) Perspectives for ring laser gyroscopes in low-frequency seismology. Bull Seismol Soc Am 99:1199–1206

    Article  Google Scholar 

  • Wells JP, Schreiber KU (2016) Rotation sensing with lasers. In: Proceedings of the 4th international working group on rotational seismology meeting, Tutzing. http://www.rotational-seismology.org/events/workshops/Presentations_2016/presentations/Wells_talk. Accessed 10 Aug 2016

  • Wiszniowski J (2006) Rotation and twist motion recording—couple pendulum and rigid seismometer system. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 451–470

    Chapter  Google Scholar 

  • Zembaty ZB (2009) Tutorial on surface rotations from the wave passage effects—stochastic approach. Bull Seismol Soc Am 99:1040–1049

    Article  Google Scholar 

  • Zembaty Z, Kokot S, Bobra P (2013) Application of rotation rate sensors in an experiment of stiffness ‘reconstruction’. Smart Mater Struct 22:077001

    Article  Google Scholar 

  • Zembaty Z, Mutke G, Nawrocki D, Bobra P (2016) Rotational ground motion records from induced seismic events. Seismol Res Lett 88:13–22

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the financial support of the Polish Ministry of Science and Higher Education project POIR.04.02.00-14-A003/16: “EPOS—System Obserwacji Płyty Europejskiej”, The National Science Center project 2016/23/N/ST10/02508 as well as the Statutory Activity of the Military University of Technology PBS-654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek R. Jaroszewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaroszewicz, L.R., Kurzych, A. (2018). Devices for a Rotational Ground Motion Measurement. In: D'Amico, S. (eds) Moment Tensor Solutions. Springer Natural Hazards. Springer, Cham. https://doi.org/10.1007/978-3-319-77359-9_32

Download citation

Publish with us

Policies and ethics