Semi-IPN- and IPN-Based Hydrogels

  • Nicole Zoratto
  • Pietro MatricardiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)


Semi-interpenetrating polymer networks (semi-IPNs) and interpenetrating polymeric networks (IPNs) have emerged as innovative materials for biomedical and pharmaceutical applications. The interest in these structures is due to the possibility of combining the favorable properties of each polymeric component of the IPNs or semi-IPNs leading to a new system with properties that often differ from those of the two single components. In this respect, polysaccharides represent an opportunity in this field, combining a general biocompatibility and a good availability. Moreover, the functional groups along the polymer chains allow chemical derivatization, widening the possibilities in semi-IPNs and IPNs building up. At the same time, materials based on proteins are often used in this field, due to their similarity to the materials present in the human body. All these overall properties allow tailoring new materials, thus designing desired properties and preparing new hydrogels useful in the biomedical field. In the present chapter, we chose to describe systems prepared starting from the most important and studied hydrogel-forming polysaccharides: alginate, hyaluronic acid, chitosan, dextran, gellan, and scleroglucan. Besides, systems based on proteins, such as gelatin, collagen, and elastin, are also described. With this chapter, we aim describing the routes already traveled in this field, depicting the state of the art and hoping to raise interest in designing new promising strategies useful in biomedical and pharmaceutical applications.


Semi-IPN IPN Hydrogels Polysaccharides Proteins 


  1. 1.
    Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65:1172–1187CrossRefPubMedGoogle Scholar
  2. 2.
    Jenkins AD, Kratochvìl P, Stepto RFT, Suter UW (1996) Glossary of basic terms in polymer science (IUPAC recommendations 1996). Pure Appl Chem 68:2287–2311CrossRefGoogle Scholar
  3. 3.
    Banerjee S, Ray S, Maiti S, Sen KK, Bhattacharyya UK, Kaity S, Ghosh A (2010) Interpenetrating polymer network (IPN): a novel biomaterial. Int J Appl Pharm 2:28–34Google Scholar
  4. 4.
    Sperling LH (1977) Interpenetrating polymer networks and related materials. J Polym Sci Macromol Rev 12:141–180CrossRefGoogle Scholar
  5. 5.
    Klempner D, Frisch KC (eds) (1980) Polymer alloys II: blends, blocks, grafts and interpenetrating networks. Plenum, New YorkGoogle Scholar
  6. 6.
    Frisch HL, Klempner D, Frisch KC (1969) A topologically interpenetrating elastomeric network. J Polym Sci B Polym Phys 7:775–779CrossRefGoogle Scholar
  7. 7.
    Sperling LH, Friedman DW (1969) Synthesis and mechanical behavior of interpenetrating polymer networks: poly(ethy1 acrylate) and polystyrene. J Polym Sci A-2 Polym Phys 7:425–427CrossRefGoogle Scholar
  8. 8.
    Mathew AP (2013) Interpenetrating polymer networks: processing, properties and applications. In: Ochsner A, FM SL, Altenbach H (eds) Advances in elastomers I. Springer, Berlin, pp 283–301CrossRefGoogle Scholar
  9. 9.
    Lipatov YS, Alekseeva T (2007) Phase-separated interpenetrating polymer networks. Adv Polym Sci 208:1–227CrossRefGoogle Scholar
  10. 10.
    Sperling LH (1994) Interpenetrating polymer networks: an overview. In: Utracki (ed) Interpenetrating polymer networks. ACS, Washington, DC, pp 3–38CrossRefGoogle Scholar
  11. 11.
    James J, Thomas GV, Akhina H, Thomas S (2016) Micro- and nano-structured interpenetrating polymer networks: state of the art, new challenges,m and opportunities. In: Thomas SD, Grande D, Cvelbar U, Raju KVSN, Narayan R, Thomas SP (eds) Micro- and Nano-structured interpenetrating polymer networks: from design to applications. John Wiley & Sons, Inc., pp 1–27Google Scholar
  12. 12.
    Lapasin R (2015) Rheological characterization of hydrogels. In: Matricardi P, Alhaique F, Coviello T (eds) Polysaccharide hydrogels: characterization and biomedical applications. Pan Stanford Publishing Pte. Ltd, Singapore, pp 83–137Google Scholar
  13. 13.
    Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24CrossRefPubMedGoogle Scholar
  14. 14.
    Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590CrossRefGoogle Scholar
  15. 15.
    Hernàndez R, Mijangos C (2009) In situ synthesis of magnetic iron oxide nanoparticles in thermally responsive alginate-poly(N-isopropylacrylamide) semi-interpenetrating polymer networks. Macromol Rapid Commun 30:176–181CrossRefPubMedGoogle Scholar
  16. 16.
    Dumitriu RP, Oprea AM, Vasile C (2009) A drug delivery system based on stimuli-responsive alginate/N-isopropylacryl amide hydrogel. Cellul Chem Technol 43:251–262Google Scholar
  17. 17.
    Guilherme MR, De Moura MR, Radovanovic E, Geuskens G, Rubira AF, Muniz EC (2005) Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly(N-isopropylacrylamide). Polymer 46:2668–2674CrossRefGoogle Scholar
  18. 18.
    Reddy M, Ramesh Babu V, Krishna Rao KSV, Subha MCS, Chowdoji Rao K, Sairam M, Aminabhavi TM (2008) Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil. Appl Polym Sci 107:2820–2829CrossRefGoogle Scholar
  19. 19.
    Choi B, Loh XJ, Tan A, Loh CK, Ye E, Kyung Joo M, Jeong B (2015) Introduction to in situ forming hydrogels for biomedical applications. In: Loh XJ (ed) In-Situ Gelling Polymers. Spinger, Singapore, pp 5–35Google Scholar
  20. 20.
    Marta Szekalska M, PuciBowska A, Szymanska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci:7697031. 17 pagesGoogle Scholar
  21. 21.
    Liu Z, Li J, Nie S, Liu H, Ding P, Pan W (2006) Study of an alginate/HPMC-based in-situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 315:12–17CrossRefPubMedGoogle Scholar
  22. 22.
    Nochos A, Douroumis D, Bouropoulos N (2008) In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr Polym 74:451–457CrossRefGoogle Scholar
  23. 23.
    Karewicz A, Zasada K, Szczubialka K, Zapotoczny S, Lach R, Nowakowska M (2010) “Smart” alginate–hydroxypropylcellulose microbeads for controlled release of heparin. Int J Pharm 385:163–169CrossRefPubMedGoogle Scholar
  24. 24.
    Choudhary S, White J, Stoppel WL, Roberts S, Bhatia S (2011) Gelation behavior of polysaccharide-based interpenetrating polymer network (IPN) hydrogels. Rheol Acta 50:39–52CrossRefGoogle Scholar
  25. 25.
    Ramesh Babu V, Krishna Rao KSV, Sairam M, Naidu VK, Hosamani KM, Aminabhavi TM (2006) pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J Appl Polym Sci 99:2671–2678CrossRefGoogle Scholar
  26. 26.
    Ju HK, Kim SY, Lee YM (2001) pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer 42:6851–6857CrossRefGoogle Scholar
  27. 27.
    Shi J, Alves NM, Mano JF (2006) Drug release of pH/temperature-responsive calcium 1109 alginate/poly(N-isopropylacrylamide) semi-IPN beads. Macromol Biosci 6:358–363CrossRefPubMedGoogle Scholar
  28. 28.
    Lin YH, Liang HF, Chung CK, Chen MC, Sung HW (2005) Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26:2105–2113CrossRefPubMedGoogle Scholar
  29. 29.
    Shikanov A, Xu M, Woodruff TK, Shea LD (2009) Interpenetrating fibrin–alginate matrices for in vitro ovarian follicle development. Biomaterials 30:5476–5485CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    La Gatta A, Schiraldi C, Esposito A, D'Agostino A, De Rosa A (2009) Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization. J Biomed Mater Res 90A:292–302CrossRefGoogle Scholar
  31. 31.
    Anwar H, Ahmad M, Minhas MU, Rehman S (2017) Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characterization. Carbohydr Polym 166:183–194CrossRefPubMedGoogle Scholar
  32. 32.
    Wang MS, Childs RF, Chang PL (2005) A novel method to enhance the stability of alginate-poly-L-lysine-alginate microcapsules. J Biomater Sci Polymer Edn 16:91–113Google Scholar
  33. 33.
    Desai NP, Sojomihardjo A, Yao Z, Ron N, Soon-Shiong P (2000) Interpenetrating polymer networks of alginate and polyethylene glycol for encapsulation of islets of Langerhans. J Microencapsul 17:677–690CrossRefPubMedGoogle Scholar
  34. 34.
    Pescosolido L, Miatto S, Di Meo C, Cencetti C, Coviello T, Alhaique F, Matricardi P (2010) Injectable and in situ gelling hydrogels for modified protein release. Eur Biophys J Biophys 39:903–909CrossRefGoogle Scholar
  35. 35.
    Matricardi P, Pontoriero M, Coviello T, Casadei MA, Alhaique F (2008) In situ cross-linkable novel alginate–dextran methacrylate IPN hydrogels for biomedical applications: mechanical characterization and drug delivery properties. Biomacromolecules 9:2014–2020CrossRefPubMedGoogle Scholar
  36. 36.
    Pescosolido L, Piro T, Vermonden T, Coviello T, Alhaique F, Hennink WE, Matricardi P (2011) Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins. Carbohydr Polym 86:208–213CrossRefGoogle Scholar
  37. 37.
    D'Arrigo G, Di Meo C, Pescosolido L, Coviello T, Alhaique F, Matricardi P (2012) Calcium alginate/dextran methacrylate IPN beads as protecting carriers for protecting carriers for protein delivery. J Mater Sci Mater Med 23:1715–1722CrossRefPubMedGoogle Scholar
  38. 38.
    Sun J, Xiao W, Tang Y, Li K, Fan H (2012) Biomimetic interpenetrated polymer network hydrogels based on methacrylated alginate and collagen for 3D pre-osteoblast spreading and osteogenic differentiation. Soft Matter 8:2398–2404CrossRefGoogle Scholar
  39. 39.
    Santos JR, Alves NM, Mano JF (2010) New thermo-responsive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid semi-interpenetrated polymer networks: swelling properties and drug release studies. J Bioact Compat Polym 25:169–184CrossRefGoogle Scholar
  40. 40.
    Pasale SK, Cerroni B, Ghugare SV, Paradossi G (2014) Multiresponsive Hyaluronan-p(NiPAAm) “click”-linked hydrogels. Macromol Biosci 14:1025–1038CrossRefPubMedGoogle Scholar
  41. 41.
    Jung YS, Park W, Park H, Leeb DK, Naa K (2017) Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 156:403–408CrossRefPubMedGoogle Scholar
  42. 42.
    Dong Y, Hassan W, Zheng Y, Saeed AO, Cao H, Tai H, Pandit A, Wang W (2002) Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel. J Mater Sci Mater Med 23:25–35CrossRefGoogle Scholar
  43. 43.
    Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, van Weeren PR, Dhert WJA, Hennink WE, Vermonden T (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12:1831–1838CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Heher P, Hilborn J, Redl H, Ossipov DA (2016) Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Acta Biomater 38:23–32CrossRefPubMedGoogle Scholar
  45. 45.
    Giusti P, Callegaro L (1994) Hyaluronic acid and derivatives thereof in interpenetrating polymer networks (IPN). Wo9401468 (A1)Google Scholar
  46. 46.
    Park YD, Tirelli N, Hubbell JA (2003) Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials 24:893–900CrossRefPubMedGoogle Scholar
  47. 47.
    Suri S, Schmidt CE (2009) Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater 5:2385–2397CrossRefPubMedGoogle Scholar
  48. 48.
    Khoshakhlagh P, Moore MJ (2015) Photoreactive interpenetrating network of hyaluronic acid and Puramatrix as a selectively tunable scaffold for neurite growth. Acta Biomater 16:23–34CrossRefPubMedGoogle Scholar
  49. 49.
    Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fernández-Gutiérrez M, Fusco S, Mayol L, San Román J, Borzacchiello A, Ambrosio LJ (2016) Stimuli-responsive chitosan/poly (N-isopropylacrylamide) semi-interpenetrating polymer networks: effect of pH and temperature on their rheological and swelling properties. Mater Sci Mater Med 27:109CrossRefGoogle Scholar
  51. 51.
    Chung TW, Lin SY, Liu DZ, Tyan YC, Yang JS (2009) Sustained release of 5-FU from Poloxamer gels interpenetrated by crosslinking chitosan network. Int J Pharm 382:39–44CrossRefPubMedGoogle Scholar
  52. 52.
    Zhou Y, Yang D, Ma G, Tan H, Jin Y, Nie J (2008) A pH-sensitive water-soluble N-carboxyethyl chitosan/poly(hydroxyethyl methacrylate) hydrogel as a potential drug sustained release matrix prepared by photopolymerization technique. Polym Adv Technol 19:1133–1141CrossRefGoogle Scholar
  53. 53.
    Yin L, Fei L, Cui F, Tang C, Yin C (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266CrossRefPubMedGoogle Scholar
  54. 54.
    Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung H-WJ (2004) Novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Control Release 96:285–300CrossRefGoogle Scholar
  55. 55.
    Guo B, Yuan J, Yao L, Gao Q (2007) Preparation and release profiles of pH/temperature-responsive carboxymethyl chitosan/P(2-(dimethylamino) ethyl methacrylate) semi-IPN amphoteric hydrogel. Colloid Polym Sci 285:665–671CrossRefGoogle Scholar
  56. 56.
    Liu Y, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30:196–207CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li L, Ge J, Ma PX, Guo B (2015) Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. RSC Adv 5:92490–92498CrossRefGoogle Scholar
  58. 58.
    Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67:605–613CrossRefGoogle Scholar
  59. 59.
    Sullad AG, Manjeshwar LS, Aminabhavi TM (2011) Novel semi-interpenetrating microspheres of dextran-grafted-acrylamide and poly(vinyl alcohol) for controlled release of Abacavir sulfate. Ind Eng Chem Res 50:11778–11784CrossRefGoogle Scholar
  60. 60.
    Ahmed A, Al-Kahtani AA, Sherigara BS (2009) Controlled release of theophylline through semi-interpenetrating network microspheres of chitosan-(dextran-g-acrylamide). J Mater Sci Mater Med 20:1437–1445CrossRefGoogle Scholar
  61. 61.
    Amici E, Clark AH, Normand V, Johnson NB (2000) Interpenetrating network formation in Gellan-agarose gel composites. Biomacromolecules 1:721–729CrossRefPubMedGoogle Scholar
  62. 62.
    Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33:3143–3152CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bellini D, Cencetti C, Meraner J, Stoppoloni D, Scotto D’Abusco A, Matricardi P (2015) An in situ gelling system for bone regeneration of osteochondral defects. Eur Polym J 72:642–650CrossRefGoogle Scholar
  64. 64.
    Cerqueira MT, Da Silva LP, Santos TC, Pirraco RP, Correlo VM, Reis RL, Marques AP (2014) Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting Neoskin vascularization. ACS Appl Mater Interfaces 6:19668–−19679CrossRefPubMedGoogle Scholar
  65. 65.
    Famida G, Hoosain FG, Choonara YE, Kumar P, Tomar LK, Tyagi C, du Toit LC, Pillay V (2016) In vivo evaluation of a PEO-Gellan gum semi-interpenetrating polymer network for the oral delivery of Sulpiride. AAPS PharmSciTech 18:654–670Google Scholar
  66. 66.
    Mundargi RC, Shelke NB, Babu VR, Patel P, Rangaswamy V, Aminabhavi TM (2010) Novel thermo-responsive semi-interpenetrating network microspheres of gellan gum-poly(N-isopropylacrylamide) for controlled release of atenolol. J Appl Polym Sci 116:1832–1841Google Scholar
  67. 67.
    Agnihotri SA, Tejraj M, Aminabhavi TM (2005) Development of novel interpenetrating network Gellan Gum-Poly(vinyl alcohol) hydrogel microspheres for the controlled release of carvedilol. Drug Dev Ind Pharm 31:491–503CrossRefPubMedGoogle Scholar
  68. 68.
    Kulkarni RV, Mangond BS, Mutalik S, Sa B (2011) Interpenetrating polymer network microcapsules of gellan gum and egg albumin entrapped with diltiazem–resin complex for controlled release application. Carbohydr Polym 83:1001–1007CrossRefGoogle Scholar
  69. 69.
    Aalaiea J, Rahmatpourb A, Vasheghani-Farahani E (2009) Rheological and swelling behavior of semi-interpenetrating networks of polyacrylamide and scleroglucan. Polym Adv Technol 20:1102–1106CrossRefGoogle Scholar
  70. 70.
    Corrente F, Abu Amara HM, Pacelli S, Paolicelli P, Casadei MA (2013) Novel injectable and in situ cross-linkable hydrogels of dextran methacrylate and scleroglucan derivatives: preparation and characterization. Carbohydr Polym 92:1033–1039CrossRefPubMedGoogle Scholar
  71. 71.
    Matricardi P, Onorati I, Masci G, Coviello T, Alhaique F (2007) Semi-IPN hydrogel based on scleroglucan and alginate: drug delivery behaviour and mechanical characterisation. J Drug Del Sci Tech 17:193–197CrossRefGoogle Scholar
  72. 72.
    Kozlov PV (1983) The structure and properties of solid gelatin and the principles of their modification. Polymer 24:651–666CrossRefGoogle Scholar
  73. 73.
    Hago EE, Li X (2013) Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: synthesis and characterization. Adv Mater Sci Eng ID 328763. 1–8CrossRefGoogle Scholar
  74. 74.
    Zhang J, Wang J, Zhang H, Lin J, Ge Z, Zou X (2016) Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration. Biomed Mater 11.
  75. 75.
    Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35:1845–1856CrossRefPubMedGoogle Scholar
  76. 76.
    Xiao W, He J, Nichol JW, Wang L, Hutson CB, Wang B, Du Y, Fan H, Khademhosseini A (2011) Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater 7:2384–2393CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Miao T, Miller EJ, McKenzie C, Oldinski RA (2015) Physically crosslinked polyvinyl alcohol and gelatin interpenetrating polymer network theta-gels for cartilage regeneration. J Mater Chem B 3:9242–9249CrossRefGoogle Scholar
  78. 78.
    Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRefGoogle Scholar
  79. 79.
    Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2008) Mechanically robust and bioadhesive collagen and Photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15:1645–1653CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Guo Y, Yuan T, Xiao Z, Tang P, Xiao Y, Fan Y, Zhang X (2012) Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J Mater Sci Mater Med 23:2267–2279CrossRefPubMedGoogle Scholar
  81. 81.
    Branco da Cunha C, Klumpers DD, Li WA, Koshy ST, Weaver JC, Chaudhuri O, Granja PL, Mooney D (2014) Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. J Biomater Dent 35:8927–8936CrossRefGoogle Scholar
  82. 82.
    Shanmugasundaram N, Ravichandran P, Reddy NP, Ramamurty N, Pal S, Rao KP (2001) Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 22:1943–1951CrossRefPubMedGoogle Scholar
  83. 83.
    Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F, Griffith M (2009) Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30:1551–1559CrossRefPubMedGoogle Scholar
  84. 84.
    Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398CrossRefPubMedGoogle Scholar
  85. 85.
    Raveendran R, Sharma CP (2016) Applications of interpenetrating polymer networks. In: Thomas S, Grande D, Cvelbar U, Raju KVSN, Narayan R, Thomas SP (eds) Micro- and Nano-structured interpenetrating polymer networks: from design to applications. John Wiley & Sons, Inc., pp 383–397Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departement of Drug Chemistry and TechnologiesSapienza University of RomaRomaItaly

Personalised recommendations