Skip to main content

Methodological Considerations for Concurrent Training

Abstract

Many studies suggest that performing both endurance and resistance training within the same training program (i.e., concurrent training) can lead to sub-optimal adaptations. However, there are also contrasting and equivocal findings, which may be related to methodological differences between studies. These methodological differences include training program design (e.g., exercise frequency, intensity, volume, order, and recovery duration), as well as other considerations such as participant training status, nutrition, the study design, and statistical analyses used in the research. This chapter will summarize research that has investigated the effects of these methodological considerations on the outcome of concurrent training studies, while also highlighting gaps in the literature and areas requiring further research.

Keywords

  • Concurrent Training
  • Participant Training Status
  • Recovery Duration
  • Resistance Training Adaptations
  • Moderate-intensity Continuous Training (MICT)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75547-2_13
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-75547-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 13.1

References

  1. Kraemer WJ, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol (1985). 1995;78(3):976–89.

    CAS  CrossRef  Google Scholar 

  2. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–63.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Bell GJ, et al. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol. 2000;81(5):418–27.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Craig B, Lucas J, Pohlman R. Effects of running, weightlifting and a combination of both on growth hormone release. J Appl Sport Sci Res. 1991;5:198–203.

    Google Scholar 

  5. Hennessy L, Watson A. The interference effects of training for strength and endurance simultaneously. J Strength Cond Res. 1994;12:9–12.

    Google Scholar 

  6. Fyfe JJ, et al. Endurance training intensity does not mediate interference to maximal lower-body strength gain during short-term concurrent training. Front Physiol. 2016;7:487.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Balabinis CP, et al. Early phase changes by concurrent endurance and strength training. J Strength Cond Res. 2003;17(2):393–401.

    PubMed  CrossRef  Google Scholar 

  8. McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002;34(3):511–9.

    PubMed  CrossRef  Google Scholar 

  9. Häkkinen K, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89(1):42–52.

    PubMed  CrossRef  Google Scholar 

  10. Kazior Z, et al. Endurance exercise enhances the effect of strength training on muscle fiber size and protein expression of Akt and mTOR. PLoS One. 2016;11(2):e0149082.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  11. Lundberg TR, et al. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol (1985). 2013;114(1):81–9.

    CrossRef  Google Scholar 

  12. Lundberg TR, Fernandez-Gonzalo R, Tesch PA. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol (1985). 2014;116(6):611–20.

    CrossRef  Google Scholar 

  13. Wang L, et al. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. J Appl Physiol (1985). 2011;111(5):1335–44.

    CAS  CrossRef  Google Scholar 

  14. Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol (Oxf). 2013;209(4):283–94.

    CAS  CrossRef  Google Scholar 

  15. Fyfe JJ, et al. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signalling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;310(11):R1297–311.

    PubMed  CrossRef  Google Scholar 

  16. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743–62.

    PubMed  CrossRef  Google Scholar 

  17. Donges CE, et al. Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men. J Appl Physiol (1985). 2012;112(12):1992–2001.

    CAS  CrossRef  Google Scholar 

  18. Carrithers JA, et al. Concurrent exercise and muscle protein synthesis: implications for exercise countermeasures in space. Aviat Space Environ Med. 2007;78(5):457–62.

    CAS  PubMed  Google Scholar 

  19. Coffey VG, et al. Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol (1985). 2009;106(4):1187–97.

    CAS  CrossRef  Google Scholar 

  20. Coffey VG, et al. Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1441–51.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Lundberg TR, et al. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc. 2012;44(9):1680–8.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Coffey VG, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab. 2006;290(5):E849–55.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Coffey VG, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20(1):190–2.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Vissing K, et al. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals. Scand J Med Sci Sports. 2013;23(3):355–66.

    CAS  PubMed  CrossRef  Google Scholar 

  25. Camera DM, et al. Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc. 2010;42(10):1843–52.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Wilkinson SB, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(Pt 15):3701–17.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):2883–96.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Denadai BS, et al. Explosive training and heavy weight training are effective for improving running economy in endurance athletes: a systematic review and meta-analysis. Sports Med. 2017;47(3):545–54.

    PubMed  CrossRef  Google Scholar 

  29. Wilson JM, et al. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293–307.

    PubMed  CrossRef  Google Scholar 

  30. Jones TW, et al. Performance and neuromuscular adaptations following differing ratios of concurrent strength and endurance training. J Strength Cond Res. 2013;27(12):3342–51.

    PubMed  CrossRef  Google Scholar 

  31. Glowacki SP, et al. Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Med Sci Sports Exerc. 2004;36(12):2119–27.

    PubMed  CrossRef  Google Scholar 

  32. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34.

    PubMed  CrossRef  Google Scholar 

  33. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–81.

    PubMed  CrossRef  Google Scholar 

  34. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313–38.

    PubMed  CrossRef  Google Scholar 

  35. Bentley DJ, et al. Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol. 2000;81(4):297–302.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Bentley DJ, Zhou S, Davie AJ. The effect of endurance exercise on muscle force generating capacity of the lower limbs. J Sci Med Sport. 1998;1(3):179–88.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Leveritt M, MacLaughlin H, Abernethy PJ. Changes in leg strength 8 and 32 h after endurance exercise. J Sports Sci. 2000;18(11):865–71.

    CAS  PubMed  CrossRef  Google Scholar 

  38. de Souza EO, et al. Acute effect of two aerobic exercise modes on maximum strength and strength endurance. J Strength Cond Res. 2007;21(4):1286–90.

    PubMed  Google Scholar 

  39. Ratamess NA, et al. Acute resistance exercise performance is negatively impacted by prior aerobic endurance exercise. J Strength Cond Res. 2016;30(10):2667–81.

    PubMed  CrossRef  Google Scholar 

  40. Lemos A, et al. The acute influence of two intensities of aerobic exercise on strength training performance in elderly women. J Strength Cond Res. 2009;23(4):1252–7.

    PubMed  CrossRef  Google Scholar 

  41. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927–54.

    PubMed  CrossRef  Google Scholar 

  42. Gergley JC. Comparison of two lower-body modes of endurance training on lower-body strength development while concurrently training. J Strength Cond Res. 2009;23(3):979–87.

    PubMed  CrossRef  Google Scholar 

  43. Chtara M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res. 2008;22(4):1037–45.

    PubMed  CrossRef  Google Scholar 

  44. Cantrell GS, et al. Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. Eur J Appl Physiol. 2014;114(4):763–71.

    PubMed  CrossRef  Google Scholar 

  45. Sale DG, et al. Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc. 1990;22(3):348–56.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Dudley GA, Djamil R. Incompatibility of endurance- and strength-training modes of exercise. J Appl Physiol (1985). 1985;59(5):1446–51.

    CAS  CrossRef  Google Scholar 

  47. Silva RF, et al. Concurrent training with different aerobic exercises. Int J Sports Med. 2012;33(8):627–34.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Edge J, Bishop D, Goodman C. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol. 2006;96(1):97–105.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Edge J, et al. Effects of high- and moderate-intensity training on metabolism and repeated sprints. Med Sci Sports Exerc. 2005;37(11):1975–82.

    PubMed  CrossRef  Google Scholar 

  50. Leveritt M, et al. Concurrent strength and endurance training. A review. Sports Med. 1999;28(6):413–27.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Barnes KR, Kilding AE. Running economy: measurement, norms, and determining factors. Sports Med Open. 2015;1(1):8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  52. Sporer BC, Wenger HA. Effects of aerobic exercise on strength performance following various periods of recovery. J Strength Cond Res. 2003;17(4):638–44.

    PubMed  Google Scholar 

  53. Bartolomei S, et al. Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. Eur J Appl Physiol. 2017;117(7):1287–98.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol (1985). 2008;104(2):542–50.

    CrossRef  Google Scholar 

  55. Jones TW, et al. Effects of strength and endurance exercise order on endocrine responses to concurrent training. Eur J Sport Sci. 2017;17(3):326–34.

    PubMed  CrossRef  Google Scholar 

  56. Inoue DS, et al. Immunometabolic responses to concurrent training: the effects of exercise order in recreational weightlifters. J Strength Cond Res. 2016;30(7):1960–7.

    PubMed  CrossRef  Google Scholar 

  57. Doma K, Deakin GB. The effects of strength training and endurance training order on running economy and performance. Appl Physiol Nutr Metab. 2013;38(6):651–6.

    PubMed  CrossRef  Google Scholar 

  58. Cadore EL, et al. Strength prior to endurance intra-session exercise sequence optimizes neuromuscular and cardiovascular gains in elderly men. Exp Gerontol. 2012;47(2):164–9.

    PubMed  CrossRef  Google Scholar 

  59. Cadore EL, et al. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age (Dordr). 2013;35(3):891–903.

    CrossRef  Google Scholar 

  60. Eklund D, et al. Acute endocrine and force responses and long-term adaptations to same-session combined strength and endurance training in women. J Strength Cond Res. 2016;30(1):164–75.

    PubMed  CrossRef  Google Scholar 

  61. Collins MA, Snow TK. Are adaptations to combined endurance and strength training affected by the sequence of training? J Sports Sci. 1993;11(6):485–91.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Davitt PM, et al. The effects of a combined resistance training and endurance exercise program in inactive college female subjects: does order matter? J Strength Cond Res. 2014;28(7):1937–45.

    PubMed  CrossRef  Google Scholar 

  63. Gravelle BL, Blessing DL. Physiological adaptation in women concurrently training for strength and endurance. J Strength Cond Res. 2000;14(1):5–13.

    Google Scholar 

  64. MacNeil LG, et al. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function. PLoS One. 2014;9(10):e109189.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  65. Wilhelm EN, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol. 2014;60:207–14.

    PubMed  CrossRef  Google Scholar 

  66. Schumann M, et al. The order effect of combined endurance and strength loadings on force and hormone responses: effects of prolonged training. Eur J Appl Physiol. 2014;114(4):867–80.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Schumann M, et al. Fitness and lean mass increases during combined training independent of loading order. Med Sci Sports Exerc. 2014;46(9):1758–68.

    CrossRef  PubMed  Google Scholar 

  68. Eklund D, et al. Neuromuscular adaptations to different modes of combined strength and endurance training. Int J Sports Med. 2015;36(2):120–9.

    CAS  PubMed  Google Scholar 

  69. Makhlouf I, et al. Effect of sequencing strength and endurance training in young male soccer players. J Strength Cond Res. 2016;30(3):841–50.

    PubMed  CrossRef  Google Scholar 

  70. McGawley K, Andersson PI. The order of concurrent training does not affect soccer-related performance adaptations. Int J Sports Med. 2013;34(11):983–90.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Abernethy PJ. Influence of acute endurance activity on isokinetic strength. J Strength Cond Res. 1993;7(3):141–6.

    Google Scholar 

  72. Leveritt M, Abernethy PJ. Acute effects of high-intensity endurance exercise on subsequent resistance activity. J Strength Cond Res. 1999;13(1):47–51.

    Google Scholar 

  73. Robineau J, et al. Specific training effects of concurrent aerobic and strength exercises depend on recovery duration. J Strength Cond Res. 2016;30(3):672–83.

    PubMed  CrossRef  Google Scholar 

  74. Murach KA, Bagley JR. Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports Med. 2016;46(8):1029–39.

    PubMed  CrossRef  Google Scholar 

  75. Garcia-Pallares J, et al. Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur J Appl Physiol. 2009;106(4):629–38.

    PubMed  CrossRef  Google Scholar 

  76. Garcia-Pallares J, et al. Performance changes in world-class kayakers following two different training periodization models. Eur J Appl Physiol. 2010;110(1):99–107.

    PubMed  CrossRef  Google Scholar 

  77. Ronnestad BR, Hansen EA, Raastad T. High volume of endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur J Appl Physiol. 2012;112(4):1457–66.

    PubMed  CrossRef  Google Scholar 

  78. Gamble P. Periodization of training for team sports athletes. Strength Cond J. 2006;28(5):56.

    CrossRef  Google Scholar 

  79. Varela-Sanz A, et al. Does concurrent training intensity distribution matter? J Strength Cond Res. 2017;31(1):181–95.

    PubMed  CrossRef  Google Scholar 

  80. Bartlett JD, Hawley JA, Morton JP. Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci. 2015;15(1):3–12.

    PubMed  CrossRef  Google Scholar 

  81. Bartlett JD, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304(6):R450–8.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Psilander N, et al. Exercise with low glycogen increases PGC-1alpha gene expression in human skeletal muscle. Eur J Appl Physiol. 2013;113(4):951–63.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Chan MH, et al. Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. FASEB J. 2004;18(14):1785–7.

    CAS  PubMed  CrossRef  Google Scholar 

  84. Hansen AK, et al. Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol (1985). 2005;98(1):93–9.

    CrossRef  Google Scholar 

  85. Yeo WK, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol (1985). 2008;105(5):1462–70.

    CAS  CrossRef  Google Scholar 

  86. Yeo WK, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95(2):351–8.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Apro W, Blomstrand E. Influence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle. Acta Physiol (Oxf). 2010;200(3):237–48.

    CAS  CrossRef  Google Scholar 

  88. Tipton KD, Wolfe RR. Protein and amino acids for athletes. J Sports Sci. 2004;22(1):65–79.

    PubMed  CrossRef  Google Scholar 

  89. Borgenvik M, Apro W, Blomstrand E. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol Endocrinol Metab. 2012;302(5):E510–21.

    CAS  PubMed  CrossRef  Google Scholar 

  90. Smiles WJ, Hawley JA, Camera DM. Effects of skeletal muscle energy availability on protein turnover responses to exercise. J Exp Biol. 2016;219(Pt 2):214–25.

    PubMed  CrossRef  Google Scholar 

  91. Areta JL, et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306(8):E989–97.

    CAS  PubMed  CrossRef  Google Scholar 

  92. Perez-Schindler J, et al. Nutritional strategies to support concurrent training. Eur J Sport Sci. 2015;15(1):41–52.

    PubMed  CrossRef  Google Scholar 

  93. Apró W, et al. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2013;305(1):E22–32.

    PubMed  CrossRef  CAS  Google Scholar 

  94. Apro W, et al. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab. 2015;308(6):E470–81.

    CAS  PubMed  CrossRef  Google Scholar 

  95. Camera DM, et al. Protein ingestion increases myofibrillar protein synthesis after concurrent exercise. Med Sci Sports Exerc. 2015;47(1):82–91.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Holway FE, Spriet LL. Sport-specific nutrition: practical strategies for team sports. J Sports Sci. 2011;29(Suppl 1):S115–25.

    PubMed  CrossRef  Google Scholar 

  97. Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in Sports and Exercise Medicine research? Eur J Sport Sci. 2014;14(8):847–51.

    PubMed  CrossRef  Google Scholar 

  98. Lewis DA, Kamon E, Hodgson JL. Physiological differences between genders implications for sports conditioning. Sports Med. 1986;3(5):357–69.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Bell G, et al. Effect of strength training and concurrent strength and endurance training on strength, testosterone, and cortisol. J Strength Cond Res. 1997;11(1):57–64.

    Google Scholar 

  100. Flores DF, et al. Dissociated time course of recovery between genders after resistance exercise. J Strength Cond Res. 2011;25(11):3039–44.

    PubMed  CrossRef  Google Scholar 

  101. West DW, et al. Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J Appl Physiol. 2012;112(11):1805–13.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Bishop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bishop, D.J., Bartlett, J., Fyfe, J., Lee, M. (2019). Methodological Considerations for Concurrent Training. In: Schumann, M., Rønnestad, B. (eds) Concurrent Aerobic and Strength Training. Springer, Cham. https://doi.org/10.1007/978-3-319-75547-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75547-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75546-5

  • Online ISBN: 978-3-319-75547-2

  • eBook Packages: MedicineMedicine (R0)