Skip to main content

Cardiorenal Syndromes

  • Chapter
  • First Online:
Ventricular-Assist Devices and Kidney Disease

Abstract

Combined disorders of heart and kidney are referred to as cardiorenal syndromes (CRS) (Ronco et al. Eur Heart J. 31(6):703–11, 2010). Disorders of one organ have a direct impact on the other organs, and can lead to worsened patient outcomes. We know that mortality is increased in patients with heart failure (HF) who have a reduced glomerular filtration rate (GFR). We also know that patients with chronic kidney disease (CKD) have an increased risk of both atherosclerotic cardiovascular disease and HF, with cardiac disorders responsible for up to 50% of deaths in patients with renal failure (Coresh et al. Levey Am J Kidney Dis. 41(1):1–12, 2003). Acute or chronic dysfunction of one organ often leads to functional impairment of the other, and diagnostic and treatment algorithms remain lacking in these scenarios. The Acute Dialysis Quality Initiative (ADQI) group has sought to further classify CRS, so that we may better understand and risk stratify patients into various subtypes, allowing for future therapeutic targets to emerge (Ronco et al. Eur Heart J. 31(6):703–11, 2010). This chapter reviews the five subtypes of CRS, and their associated pathology and current treatment options available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACEi:

Angiotensin converting enzyme inhibitor

ACS:

Acute coronary syndrome

ADHF:

Acute decompensated heart failure

ADQI:

Acute dialysis quality initiative

AKI:

Acute kidney injury

ARB:

Angiotensin receptor blockers

ARNI :

Angiotensin neprilysin inhibitor

ATN:

Acute tubular injury

CAD:

Coronary artery disease

CKD:

Chronic kidney disease

CO:

Cardiac output

CRCL:

Creatinine clearance

CRS:

Cardiorenal syndrome

ESA:

Erythropoietin stimulating agent

ESRD:

End stage renal disease

FGF-23:

Fibroblast growth factor 23

GFR:

Glomerular filtration rate

HF:

Heart failure

HTN:

Hypertension

LVH:

Left ventricular hypertrophy

MDRD:

Modification of diet in renal disease

NGAL:

Neutrophil gelatinase-associated lipocalin

RAAS:

Renin–angiotensin–aldosterone system

RIFLE:

Risk, injury, failure, loss, end stage renal disease

RV:

Right ventricle

sCr:

Serum creatinine

SNS:

Sympathetic nervous system

UF:

Ultrafiltration

VC:

Vascular calcifications

WRF:

Worsening renal function

References

  1. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31(6):703–11. https://doi.org/10.1093/eurheartj/ehp507.

    Article  PubMed  Google Scholar 

  2. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003;41(1):1–12. https://doi.org/10.1053/ajkd.2003.50007.

    Article  PubMed  Google Scholar 

  3. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39. https://doi.org/10.1016/j.jacc.2008.07.051.

    Article  PubMed  Google Scholar 

  4. McCullough PA, Kellum JA, Haase M, Muller C, Damman K, Murray PT, et al. Pathophysiology of the cardiorenal syndromes: executive summary from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:82–98. https://doi.org/10.1159/000349966. This paper highlights an up to date review of cardiorenal pathophysiology

    Article  PubMed  Google Scholar 

  5. Damman K, Jaarsma T, Voors AA, Navis G, Hillege HL, van Veldhuisen DJ, et al. Both in- and out-hospital worsening of renal function predict outcome in patients with heart failure: results from the Coordinating Study Evaluating Outcome of Advising and Counseling in Heart Failure (COACH). Eur J Heart Fail. 2009;11(9):847–54. https://doi.org/10.1093/eurjhf/hfp108.

    Article  PubMed  Google Scholar 

  6. Gottlieb SS, Abraham W, Butler J, Forman DE, Loh E, Massie BM, et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail. 2002;8(3):136–41.

    Article  PubMed  Google Scholar 

  7. Smith GL, Vaccarino V, Kosiborod M, Lichtman JH, Cheng S, Watnick SG, et al. Worsening renal function: what is a clinically meaningful change in creatinine during hospitalization with heart failure? J Card Fail. 2003;9(1):13–25. https://doi.org/10.1054/jcaf.2003.3.

    Article  PubMed  CAS  Google Scholar 

  8. Metra M, Nodari S, Parrinello G, Bordonali T, Bugatti S, Danesi R, et al. Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail. 2008;10(2):188–95. https://doi.org/10.1016/j.ejheart.2008.01.011.

    Article  PubMed  Google Scholar 

  9. Chen S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol. 2013;24(6):877–88. https://doi.org/10.1681/ASN.2012070653.

    Article  PubMed  CAS  Google Scholar 

  10. Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: A systematic review. Kidney Int. 2008;73(5):538–46. https://doi.org/10.1038/sj.ki.5002743.

    Article  PubMed  CAS  Google Scholar 

  11. Latchamsetty R, Fang J, Kline-Rogers E, Mukherjee D, Otten RF, LaBounty TM, et al. Prognostic value of transient and sustained increase in in-hospital creatinine on outcomes of patients admitted with acute coronary syndrome. Am J Cardiol. 2007;99(7):939–42. https://doi.org/10.1016/j.amjcard.2006.10.058.

    Article  PubMed  CAS  Google Scholar 

  12. Testani JM, McCauley BD, Chen J, Coca SG, Cappola TP, Kimmel SE. Clinical characteristics and outcomes of patients with improvement in renal function during the treatment of decompensated heart failure. J Card Fail. 2011;17(12):993–1000. https://doi.org/10.1016/j.cardfail.2011.08.009. This paper highlights the important notion that improvement in renal function also does not necessarily portend a favorable prognosis.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72. https://doi.org/10.1161/CIRCULATIONAHA.109.933275.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13(8):846–51. https://doi.org/10.1093/eurjhf/hfr087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Costanzo MR, Chawla LS, Tumlin JA, Herzog CA, McCullough PA, Kellum JA, et al. The role of early and sufficient isolated venovenous ultrafiltration in heart failure patients with pulmonary and systemic congestion. Rev Cardiovasc Med. 2013;14(2–4):e123–33.

    PubMed  Google Scholar 

  16. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8. https://doi.org/10.1016/j.jacc.2008.08.080.

    Article  PubMed  Google Scholar 

  17. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96. https://doi.org/10.1016/j.jacc.2008.05.068.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, et al. Pathophysiology of the cardio-renal syndromes types 1-5: An uptodate. Indian Heart J. 2017;69(2):255–65. https://doi.org/10.1016/j.ihj.2017.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tokuyama H, Kelly DJ, Zhang Y, Gow RM, Gilbert RE. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and heart following prolonged unilateral renal ischemia. Nephron Physiol. 2007;106(3):54–62. https://doi.org/10.1159/000103910.

    Article  Google Scholar 

  20. Goldberg A, Hammerman H, Petcherski S, Zdorovyak A, Yalonetsky S, Kapeliovich M, et al. Inhospital and 1-year mortality of patients who develop worsening renal function following acute ST-elevation myocardial infarction. Am Heart J. 2005;150(2):330–7. https://doi.org/10.1016/j.ahj.2004.09.055.

    Article  PubMed  Google Scholar 

  21. Jose P, Skali H, Anavekar N, Tomson C, Krumholz HM, Rouleau JL, et al. Increase in creatinine and cardiovascular risk in patients with systolic dysfunction after myocardial infarction. J Am Soc Nephrol. 2006;17(10):2886–91. https://doi.org/10.1681/asn.2006010063.

    Article  PubMed  CAS  Google Scholar 

  22. Damman K, Navis G, Smilde TD, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9(9):872–8. https://doi.org/10.1016/j.ejheart.2007.05.010.

    Article  PubMed  Google Scholar 

  23. Nohria A, Hasselblad V, Stebbins A, Pauly DF, Fonarow GC, Shah M, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51(13):1268–74. https://doi.org/10.1016/j.jacc.2007.08.072.

    Article  PubMed  Google Scholar 

  24. Braam B, Cupples WA, Joles JA, Gaillard C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev. 2012;17(2):161–75. https://doi.org/10.1007/s10741-011-9246-2.

    Article  PubMed  Google Scholar 

  25. Schlatter E, Salomonsson M, Persson AE, Greger R. Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2ClK+ cotransport. Pflugers Archiv. 1989;414(3):286–90.

    Article  CAS  PubMed  Google Scholar 

  26. Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49(6):675–83. https://doi.org/10.1016/j.jacc.2006.07.073.

    Article  PubMed  CAS  Google Scholar 

  27. Costanzo MR, Negoianu D, Jaski BE, Bart BA, Heywood JT, Anand IS, et al. Aquapheresis versus intravenous diuretics and hospitalizations for heart failure. JACC Heart Fail. 2016;4(2):95–105. https://doi.org/10.1016/j.jchf.2015.08.005.

    Article  PubMed  Google Scholar 

  28. Marenzi G, Muratori M, Cosentino ER, Rinaldi ER, Donghi V, Milazzo V, et al. Continuous ultrafiltration for congestive heart failure: the CUORE trial. J Card Fail. 2014;20(1):9–17. https://doi.org/10.1016/j.cardfail.2013.11.004.

    Article  PubMed  Google Scholar 

  29. Bart BA, Goldsmith SR, Lee KL, Redfield MM, Felker GM, O'Connor CM, et al. Cardiorenal rescue study in acute decompensated heart failure: rationale and design of CARRESS-HF, for the Heart Failure Clinical Research Network. J Card Fail. 2012;18(3):176–82. https://doi.org/10.1016/j.cardfail.2011.12.009.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cuffe MS, Califf RM, Adams KF Jr, et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: A randomized controlled trial. JAMA. 2002;287(12):1541–7. https://doi.org/10.1001/jama.287.12.1541.

    Article  PubMed  CAS  Google Scholar 

  31. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. https://doi.org/10.1016/j.jacc.2013.05.019.

    Article  PubMed  Google Scholar 

  32. Chen HH, Anstrom KJ, Givertz MM, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: The rose acute heart failure randomized trial. JAMA. 2013;310(23):2533–43. https://doi.org/10.1001/jama.2013.282190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Triposkiadis FK, Butler J, Karayannis G, Starling RC, Filippatos G, Wolski K, et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion: the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int J Cardiol. 2014;172(1):115–21. https://doi.org/10.1016/j.ijcard.2013.12.276.

    Article  PubMed  Google Scholar 

  34. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13(6):422–30. https://doi.org/10.1016/j.cardfail.2007.03.011.

    Article  PubMed  Google Scholar 

  35. Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney’s perspective. Heart Fail Rev. 2015;20(4):519–32. https://doi.org/10.1007/s10741-015-9481-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006;113(5):671–8. https://doi.org/10.1161/circulationaha.105.580506.

    Article  PubMed  Google Scholar 

  37. Tanaka K, Ito M, Kodama M, Maruyama H, Hoyano M, Mitsuma W, et al. Longitudinal change in renal function in patients with idiopathic dilated cardiomyopathy without renal insufficiency at initial diagnosis. Circ J. 2007;71(12):1927–31.

    Article  PubMed  Google Scholar 

  38. McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW. Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation. 2004;109(8):1004–9. https://doi.org/10.1161/01.CIR.0000116764.53225.A9.

    Article  PubMed  Google Scholar 

  39. Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol. 2009;20(3):672–9. https://doi.org/10.1681/asn.2008070669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Miura M, Sakata Y, Miyata S, Nochioka K, Takada T, Tadaki S, et al. Prognostic impact of subclinical microalbuminuria in patients with chronic heart failure. Circ J. 2014;78(12):2890–8.

    Article  CAS  PubMed  Google Scholar 

  41. Austin WJ, Bhalla V, Hernandez-Arce I, Isakson SR, Beede J, Clopton P, et al. Correlation and prognostic utility of B-type natriuretic peptide and its amino-terminal fragment in patients with chronic kidney disease. Am J Clin Pathol. 2006;126(4):506–12. https://doi.org/10.1309/m7aaxa0j1thmncdf.

    Article  PubMed  CAS  Google Scholar 

  42. Shrestha K, Borowski AG, Troughton RW, Thomas JD, Klein AL, Tang WH. Renal dysfunction is a stronger determinant of systemic neutrophil gelatinase-associated lipocalin levels than myocardial dysfunction in systolic heart failure. J Card Fail. 2011;17(6):472–8. https://doi.org/10.1016/j.cardfail.2011.02.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bolignano D, Basile G, Parisi P, Coppolino G, Nicocia G, Buemi M. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation Res. 2009;12(1):7–14. https://doi.org/10.1089/rej.2008.0803.

    Article  PubMed  CAS  Google Scholar 

  44. Cruz DN, Schmidt-Ott KM, Vescovo G, House AA, Kellum JA, Ronco C, et al. Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:117–36. https://doi.org/10.1159/000349968.

    Article  PubMed  Google Scholar 

  45. Guazzi M, Gatto P, Giusti G, Pizzamiglio F, Previtali I, Vignati C, et al. Pathophysiology of cardiorenal syndrome in decompensated heart failure: role of lung-right heart-kidney interaction. Int J Cardiol. 2013;169(6):379–84. https://doi.org/10.1016/j.ijcard.2013.09.014.

    Article  PubMed  CAS  Google Scholar 

  46. Ronco C, McCullough PA, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardiorenal syndromes: an executive summary from the consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2010;165:54–67. https://doi.org/10.1159/000313745.

    Article  PubMed  Google Scholar 

  47. Valika AA, Gheorghiade M. Ace inhibitor therapy for heart failure in patients with impaired renal function: a review of the literature. Heart Fail Rev. 2013;18(2):135–40. https://doi.org/10.1007/s10741-011-9295-6.

    Article  PubMed  CAS  Google Scholar 

  48. Dickstein K, Cohen-Solal A, Filippatos G, JJ MM, Ponikowski P, Poole-Wilson PA, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10(10):933–89. https://doi.org/10.1016/j.ejheart.2008.08.005.

    Article  PubMed  Google Scholar 

  49. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin Inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  PubMed  CAS  Google Scholar 

  50. Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87(4):1072–8. https://doi.org/10.1016/j.athoracsur.2009.01.022.

    Article  PubMed  Google Scholar 

  51. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23. https://doi.org/10.1007/s00134-015-3934-7.

    Article  PubMed  Google Scholar 

  52. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8(9):1482–93. https://doi.org/10.2215/cjn.00710113.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saratzis A, Harrison S, Barratt J, Sayers RD, Sarafidis PA, Bown MJ. Intervention associated acute kidney injury and long-term cardiovascular outcomes. Am J Nephrol. 2015;42(4):285–94. https://doi.org/10.1159/000440986.

    Article  PubMed  CAS  Google Scholar 

  54. James MT, Ghali WA, Knudtson ML, Ravani P, Tonelli M, Faris P, et al. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation. 2011;123(4):409–16. https://doi.org/10.1161/CIRCULATIONAHA.110.970160.

    Article  PubMed  Google Scholar 

  55. Wu VC, Wu CH, Huang TM, Wang CY, Lai CF, Shiao CC, et al. Long-term risk of coronary events after AKI. J Am Soc Nephrol. 2014;25(3):595–605. https://doi.org/10.1681/ASN.2013060610.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Clementi A, Virzi GM, Brocca A, de Cal M, Pastori S, Clementi M, et al. Advances in the pathogenesis of cardiorenal syndrome type 3. Oxidative Med Cell Longev. 2015;2015:148082. https://doi.org/10.1155/2015/148082.

    Article  CAS  Google Scholar 

  57. Marenzi G, Ferrari C, Marana I, Assanelli E, De Metrio M, Teruzzi G, et al. Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (Induced Diuresis With Matched Hydration Compared to Standard Hydration for Contrast Induced Nephropathy Prevention) trial. JACC Cardiovasc Interv. 2012;5(1):90–7. https://doi.org/10.1016/j.jcin.2011.08.017.

    Article  PubMed  Google Scholar 

  58. Briguori C, Visconti G, Focaccio A, Airoldi F, Valgimigli M, Sangiorgi GM, et al. Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II): RenalGuard System in high-risk patients for contrast-induced acute kidney injury. Circulation. 2011;124(11):1260–9. https://doi.org/10.1161/CIRCULATIONAHA.111.030759.

    Article  PubMed  CAS  Google Scholar 

  59. Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383(9931):1814–23. https://doi.org/10.1016/S0140-6736(14)60689-9.

    Article  PubMed  Google Scholar 

  60. Han Y, Zhu G, Han L, Hou F, Huang W, Liu H, et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63(1):62–70. https://doi.org/10.1016/j.jacc.2013.09.017.

    Article  PubMed  CAS  Google Scholar 

  61. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. https://doi.org/10.1056/NEJMoa062200.

    Article  Google Scholar 

  62. Selby NM, McIntyre CW. The acute cardiac effects of dialysis. Semin Dial. 2007;20(3):220–8. https://doi.org/10.1111/j.1525-139X.2007.00281.x.

    Article  PubMed  Google Scholar 

  63. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034–47. https://doi.org/10.1681/ASN.2005101085.

    Article  PubMed  Google Scholar 

  64. Perazella MA, Khan S. Increased mortality in chronic kidney disease: a call to action. Am J Med Sci. 2006;331(3):150–3.

    Article  PubMed  Google Scholar 

  65. Foley RN, Murray AM, Li S, Herzog CA, McBean AM, Eggers PW, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16(2):489–95. https://doi.org/10.1681/ASN.2004030203.

    Article  PubMed  Google Scholar 

  66. Rahman M, Pressel S, Davis BR, Nwachuku C, Wright JT Jr, Whelton PK, et al. Cardiovascular outcomes in high-risk hypertensive patients stratified by baseline glomerular filtration rate. Ann Intern Med. 2006;144(3):172–80.

    Article  PubMed  Google Scholar 

  67. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164(6):659–63. https://doi.org/10.1001/archinte.164.6.659.

    Article  PubMed  Google Scholar 

  68. Valika A, Peixoto AJ. Hypertension Management in Transition: From CKD to ESRD. Adv Chronic Kidney Dis. 2016;23(4):255–61. https://doi.org/10.1053/j.ackd.2016.02.002.

    Article  PubMed  Google Scholar 

  69. Whitman IR, Feldman HI, Deo R. CKD and sudden cardiac death: epidemiology, mechanisms, and therapeutic approaches. J Am Soc Nephrol. 2012;23(12):1929–39. https://doi.org/10.1681/ASN.2012010037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Tumlin JA, Costanzo MR, Chawla LS, Herzog CA, Kellum JA, McCullough PA, et al. Cardiorenal syndrome type 4: insights on clinical presentation and pathophysiology from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:158–73. https://doi.org/10.1159/000349972.

    Article  PubMed  Google Scholar 

  71. McIntyre CW, Burton JO, Selby NM, Leccisotti L, Korsheed S, Baker CS, et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol. 2008;3(1):19–26. https://doi.org/10.2215/CJN.03170707.

    Article  PubMed  PubMed Central  Google Scholar 

  72. McIntyre CW. Haemodialysis-induced myocardial stunning in chronic kidney disease—a new aspect of cardiovascular disease. Blood Purif. 2010;29(2):105–10. https://doi.org/10.1159/000245634.

    Article  PubMed  Google Scholar 

  73. Joki N, Hase H, Nakamura R, Yamaguchi T. Onset of coronary artery disease prior to initiation of haemodialysis in patients with end-stage renal disease. Nephrol, Dial, Transplant. 1997;12(4):718–23.

    Article  CAS  Google Scholar 

  74. Ohtake T, Kobayashi S, Moriya H, Negishi K, Okamoto K, Maesato K, et al. High prevalence of occult coronary artery stenosis in patients with chronic kidney disease at the initiation of renal replacement therapy: an angiographic examination. J Am Soc Nephrol. 2005;16(4):1141–8. https://doi.org/10.1681/ASN.2004090765.

    Article  PubMed  Google Scholar 

  75. Chonchol M, Whittle J, Desbien A, Orner MB, Petersen LA, Kressin NR. Chronic kidney disease is associated with angiographic coronary artery disease. Am J Nephrol. 2008;28(2):354–60. https://doi.org/10.1159/000111829.

    Article  PubMed  Google Scholar 

  76. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408. https://doi.org/10.1172/JCI46122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hill KM, Martin BR, Wastney ME, McCabe GP, Moe SM, Weaver CM, et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int. 2013;83(5):959–66. https://doi.org/10.1038/ki.2012.403.

    Article  PubMed  CAS  Google Scholar 

  78. Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339(9):584–90. https://doi.org/10.1056/NEJM199808273390903.

    Article  PubMed  CAS  Google Scholar 

  79. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355(20):2085–98. https://doi.org/10.1056/NEJMoa065485.

    Article  PubMed  CAS  Google Scholar 

  80. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–32. https://doi.org/10.1056/NEJMoa0907845.

    Article  PubMed  Google Scholar 

  81. Drueke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355(20):2071–84. https://doi.org/10.1056/NEJMoa062276.

    Article  PubMed  CAS  Google Scholar 

  82. Swedberg K, Young JB, Anand IS, Cheng S, Desai AS, Diaz R, et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med. 2013;368(13):1210–9. https://doi.org/10.1056/NEJMoa1214865.

    Article  PubMed  CAS  Google Scholar 

  83. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48. https://doi.org/10.1056/NEJMoa0908355.

    Article  PubMed  CAS  Google Scholar 

  84. Wali RK, Wang GS, Gottlieb SS, Bellumkonda L, Hansalia R, Ramos E, et al. Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J Am Coll Cardiol. 2005;45(7):1051–60. https://doi.org/10.1016/j.jacc.2004.11.061.

    Article  PubMed  Google Scholar 

  85. Nadeau-Fredette A-C, Hawley CM, Pascoe EM, Chan CT, Clayton PA, Polkinghorne KR, et al. An incident cohort study comparing survival on home hemodialysis and peritoneal dialysis (Australia and New Zealand Dialysis and Transplantation Registry). Clin J Am Soc Nephrol. 2015;10(8):1397–407. https://doi.org/10.2215/CJN.00840115.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mehta RL, Rabb H, Shaw AD, Singbartl K, Ronco C, McCullough PA, et al. Cardiorenal syndrome type 5: clinical presentation, pathophysiology and management strategies from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:174–94. https://doi.org/10.1159/000349970.

    Article  PubMed  Google Scholar 

  87. Wang D-W, Yin Y-M, Yao Y-M. Advances in the management of acute liver failure. World J Gastroenterol. 2013;19(41):7069–77. https://doi.org/10.3748/wjg.v19.i41.7069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14(3):R82. https://doi.org/10.1186/cc9004.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lupu F, Keshari RS, Lambris JD, Coggeshall KM. Crosstalk between the coagulation and complement systems in sepsis. Thromb Res. 2014;133(Suppl 1):S28–31. https://doi.org/10.1016/j.thromres.2014.03.014.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fede G, Privitera G, Tomaselli T, Spadaro L, Purrello F. Cardiovascular dysfunction in patients with liver cirrhosis. Ann Gastroenterol. 2015;28(1):31–40.

    PubMed  PubMed Central  Google Scholar 

  91. Forni LG, Ricci Z, Ronco C. Extracorporeal renal replacement therapies in the treatment of sepsis: where are we? Semin Nephrol. 2015;35(1):55–63. https://doi.org/10.1016/j.semnephrol.2015.01.006.

    Article  PubMed  Google Scholar 

  92. Barratt-Due A, Pischke SE, Nilsson PH, Espevik T, Mollnes TE. Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J Leukoc Biol. 2016;101(1):193–204. https://doi.org/10.1189/jlb.3VMR0316-132R.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Valika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valika, A., Valika, A., Udani, S. (2018). Cardiorenal Syndromes. In: Desai, C., Cotts, W., Lerma, E., Rudnick, M. (eds) Ventricular-Assist Devices and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-74657-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74657-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74656-2

  • Online ISBN: 978-3-319-74657-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics