Skip to main content

Advertisement

Log in

Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart and kidney interactions are fascinating, in the sense that failure of the one organ strongly affects the function of the other. In this review paper, we analyze how principal driving forces for glomerular filtration and renal blood flow are changed in heart failure. Moreover, renal autoregulation and modulation of neurohumoral factors, which can both have repercussions on renal function, are analyzed. Two paradigms seem to apply. One is that the renin-angiotensin system (RAS), the sympathetic nervous system (SNS), and extracellular volume control are the three main determinants of renal function in heart failure. The other is that the classical paradigm to analyze renal dysfunction that is widely applied in nephrology also applies to the pathophysiology of heart failure: pre-renal, intra-renal, and post-renal alterations together determine glomerular filtration. At variance with the classical paradigm is that the most important post-renal factor in heart failure seems renal venous hypertension that, by increasing renal tubular pressure, decreases GFR. When different pharmacological strategies to inhibit the RAS and SNS and to assist renal volume control are considered, there is a painful lack in knowledge about how widely applied drugs affect primary driving forces for ultrafiltration, renal autoregulation, and neurohumoral control. We call for more clinical physiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26:11–17

    Article  PubMed  Google Scholar 

  2. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539

    Article  PubMed  Google Scholar 

  3. El Nahas M (2010) Cardio-kidney-damage: a unifying concept. Kidney Int 78:14–18

    Article  PubMed  Google Scholar 

  4. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588

    Article  PubMed  Google Scholar 

  5. Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Article  PubMed  Google Scholar 

  6. Udani SM, Koyner JL (2010) The effects of heart failure on renal function. Cardiol Clin 28:453–465

    Article  PubMed  Google Scholar 

  7. Deen WM, Robertson CR, Brenner BM (1972) A model of glomerular ultrafiltration in the rat. Am J Physiol 223:1178–1183

    PubMed  CAS  Google Scholar 

  8. Gabbai FB, Gushwa LC, Peterson OW, Wilson CB, Blantz RC (1987) Analysis of renal function in the two-kidney Goldblatt model. Am J Physiol 252:F131–F137

    PubMed  CAS  Google Scholar 

  9. Schnermann J, Wright FS, Davis JM, von Stackelberg W, Grill G (1970) Regulation of superficial nephron filtration rate by tubulo-glomerular feedback. Pflugers Arch 318:147–175

    Article  PubMed  CAS  Google Scholar 

  10. Braam B, Navar LG, Mitchell KD (1995) Modulation of tubuloglomerular feedback by angiotensin II type 1 receptors during the development of Goldblatt hypertension. Hypertension 25:1232–1237

    PubMed  CAS  Google Scholar 

  11. Oken DE (1982) An analysis of glomerular dynamics in rat, dog, and man. Kidney Int 22:136–145

    Article  PubMed  CAS  Google Scholar 

  12. Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28:220–231

    PubMed  CAS  Google Scholar 

  13. Cupples WA, Braam B (2007) Assessment of renal autoregulation. Am J Physiol Renal Physiol 292:F1105–F1123

    Article  PubMed  CAS  Google Scholar 

  14. Just A, Arendshorst WJ (2003) Dynamics and contribution of mechanisms mediating renal blood flow autoregulation. Am J Physiol Regul Integr Comp Physiol 285:R619–R631

    PubMed  Google Scholar 

  15. Siu KL, Sung B, Cupples WA, Moore LC, Chon KH (2009) Detection of low-frequency oscillations in renal blood flow. Am J Physiol Renal Physiol 297:F155–F162

    Article  PubMed  CAS  Google Scholar 

  16. Carmines PK, Inscho EW, Gensure RC (1990) Arterial pressure effects on preglomerular microvasculature of juxtamedullary nephrons. Am J Physiol 258:F94–F102

    PubMed  CAS  Google Scholar 

  17. Loutzenhiser R, Bidani A, Chilton L (2002) Renal myogenic response: kinetic attributes and physiological role. Circ Res 90:1316–1324

    Article  PubMed  CAS  Google Scholar 

  18. Braam B, Mitchell KD, Koomans HA, Navar LG (1993) Relevance of the tubuloglomerular feedback mechanism in pathophysiology. J Am Soc Nephrol 4:1257–1274

    PubMed  CAS  Google Scholar 

  19. Schnermann J, Traynor T, Yang T et al (1998) Tubuloglomerular feedback: new concepts and developments. Kidney Int Suppl 67:S40–S45

    Article  PubMed  CAS  Google Scholar 

  20. Vallon V (2003) Tubuloglomerular feedback and the control of glomerular filtration rate. News Physiol Sci 18:169–174

    PubMed  CAS  Google Scholar 

  21. Kriz W (2004) Adenosine and ATP: traffic regulators in the kidney. J Clin Invest 114:611–613

    PubMed  CAS  Google Scholar 

  22. Schnermann J, Weihprecht H, Briggs JP (1990) Inhibition of tubuloglomerular feedback during adenosine1 receptor blockade. Am J Physiol 258:F553–F561

    PubMed  CAS  Google Scholar 

  23. Sun D, Samuelson LC, Yang T et al (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A 98:9983–9988

    Article  PubMed  CAS  Google Scholar 

  24. Leyssac PP, Karlsen FM, Holstein-Rathlou NH, Skott O (1994) On determinants of glomerular filtration rate after inhibition of proximal tubular reabsorption. Am J Physiol 266:R1544–R1550

    PubMed  CAS  Google Scholar 

  25. Skott P, Hommel E, Bruun NE, Arnold-Larsen S, Parving HH (1989) The acute effect of acetazolamide on glomerular filtration rate and proximal tubular reabsorption of sodium and water in normal man. Scand J Clin Lab Invest 49:583–587

    Article  PubMed  CAS  Google Scholar 

  26. Carmines PK, Morrison TK, Navar LG (1986) Angiotensin II effects on microvascular diameters of in vitro blood-perfused juxtamedullary nephrons. Am J Physiol 251:F610–F618

    PubMed  CAS  Google Scholar 

  27. Carmines PK, Perry MD, Hazelrig JB, Navar LG (1987) Effects of preglomerular and postglomerular vascular resistance alterations on filtration fraction. Kidney Int Suppl 20:S229–S232

    PubMed  CAS  Google Scholar 

  28. Mitchell KD, Braam B, Navar LG (1992) Hypertensinogenic mechanisms mediated by renal actions of renin-angiotensin system. Hypertension 19:I18–I27

    PubMed  CAS  Google Scholar 

  29. Braam B, Koomans HA (1996) Renal responses to antagonism of the renin-angiotensin system. Curr Opin Nephrol Hypertens 5:89–96

    Article  PubMed  CAS  Google Scholar 

  30. DiBona GF, Sawin LL (2004) Effect of renal denervation on dynamic autoregulation of renal blood flow. Am J Physiol Renal Physiol 286:F1209–F1218

    Article  PubMed  CAS  Google Scholar 

  31. Rudenstam J, Bergstrom G, Taghipour K, Gothberg G, Karlstrom G (1995) Efferent renal sympathetic nerve stimulation in vivo. Effects on regional renal haemodynamics in the Wistar rat, studied by laser-Doppler technique. Acta Physiol Scand 154:387–394

    Article  PubMed  CAS  Google Scholar 

  32. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    PubMed  CAS  Google Scholar 

  33. Takabatake T (1982) Feedback regulation of glomerular filtration rate in the denervated rat kidney. Kidney Int Suppl 12:S129–S135

    PubMed  CAS  Google Scholar 

  34. Hermansson K, Kallskog O, Wolgast M (1984) Effect of renal nerve stimulation on the activity of the tubuloglomerular feedback mechanism. Acta Physiol Scand 120:381–385

    Article  PubMed  CAS  Google Scholar 

  35. Martinez-Rumayor A, Richards AM, Burnett JC, Januzzi JL Jr (2008) Biology of the natriuretic peptides. Am J Cardiol 101:3–8

    Article  PubMed  CAS  Google Scholar 

  36. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321–328

    Article  PubMed  CAS  Google Scholar 

  37. Gaillard CA, Koomans HA, Mees EJ (1988) Enalapril attenuates natriuresis of atrial natriuretic factor in humans. Hypertension 11:160–165

    PubMed  CAS  Google Scholar 

  38. Nishikimi T, Miura K, Minamino N, Takeuchi K, Takeda T (1994) Role of endogenous atrial natriuretic peptide on systemic and renal hemodynamics in heart failure rats. Am J Physiol 267:H182–H186

    PubMed  CAS  Google Scholar 

  39. Baylis C, Harton P, Engels K (1990) Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol 1:875–881

    PubMed  CAS  Google Scholar 

  40. Baylis C, Mitruka B, Deng A (1992) Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:278–281

    Article  PubMed  CAS  Google Scholar 

  41. Zatz R, de Nucci G (1991) Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol 261:F360–F363

    PubMed  CAS  Google Scholar 

  42. Kramp RA, Fourmanoir P, Ladriere L et al (2000) Effects of Ca(2+) channel activity on renal hemodynamics during acute attenuation of NO synthesis in the rat. Am J Physiol Renal Physiol 278:F561–F569

    PubMed  CAS  Google Scholar 

  43. Kramp R, Fourmanoir P, Caron N (2001) Endothelin resets renal blood flow autoregulatory efficiency during acute blockade of NO in the rat. Am J Physiol Renal Physiol 281:F1132–F1140

    PubMed  CAS  Google Scholar 

  44. Turkstra E, Braam B, Koomans HA (2000) Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. J Am Soc Nephrol 11:847–855

    PubMed  CAS  Google Scholar 

  45. Shi Y, Wang X, Chon KH, Cupples WA (2006) Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide. Am J Physiol Regul Integr Comp Physiol 290:R982–R991

    Article  PubMed  CAS  Google Scholar 

  46. Braam B, Koomans HA (1995) Reabsorption of nitro-l-arginine infused into the late proximal tubule participates in modulation of TGF responsiveness. Kidney Int 47:1252–1257

    Article  PubMed  CAS  Google Scholar 

  47. Braam B, Koomans HA (1995) Nitric oxide antagonizes the actions of angiotensin II to enhance tubuloglomerular feedback responsiveness. Kidney Int 48:1406–1411

    Article  PubMed  CAS  Google Scholar 

  48. Haas GJ, Leier CV (2009) Are hemodynamic parameters predictors of mortality? Heart Fail Clin 5:229–240

    Article  PubMed  Google Scholar 

  49. Cody RJ, Ljungman S, Covit AB et al (1988) Regulation of glomerular filtration rate in chronic congestive heart failure patients. Kidney Int 34:361–367

    Article  PubMed  CAS  Google Scholar 

  50. Smilde TD, Damman K, van der Harst P et al (2009) Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol 98:121–129

    Article  PubMed  CAS  Google Scholar 

  51. Robertson CR, Deen WM, Troy JL, Brenner BM (1972) Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am J Physiol 223:1191–1200

    PubMed  CAS  Google Scholar 

  52. Schunkert H, Tang SS, Litwin SE et al (1993) Regulation of intrarenal and circulating renin-angiotensin systems in severe heart failure in the rat. Cardiovasc Res 27:731–735

    Article  PubMed  CAS  Google Scholar 

  53. Patel KP (2000) Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Fail Rev 5:73–86

    Article  PubMed  CAS  Google Scholar 

  54. Myers BD, Deen WM, Brenner BM (1975) Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and proximal tubule fluid reabsorption in the rat. Circ Res 37:101–110

    PubMed  CAS  Google Scholar 

  55. Fleming JT, Zhang C, Chen J, Porter JP (1992) Selective preglomerular constriction to nerve stimulation in rat hydronephrotic kidneys. Am J Physiol 262:F348–F353

    PubMed  CAS  Google Scholar 

  56. Weidmann P, Beretta-Piccoli C, Steffen F, Blumberg A, Reubi FC (1976) Hypertension in terminal renal failure. Kidney Int 9:294–301

    Article  PubMed  CAS  Google Scholar 

  57. Ligtenberg G, Blankestijn PJ, Oey PL et al (1999) Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med 340:1321–1328

    Article  PubMed  CAS  Google Scholar 

  58. Braam B (1999) Renal endothelial and macula densa NOS: integrated response to changes in extracellular fluid volume. Am J Physiol 276:R1551–R1561

    PubMed  CAS  Google Scholar 

  59. Navar LG (1998) Integrating multiple paracrine regulators of renal microvascular dynamics. Am J Physiol 274:F433–F444

    PubMed  CAS  Google Scholar 

  60. Osswald H, Spielman WS, Knox FG (1978) Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 43:465–469

    PubMed  CAS  Google Scholar 

  61. Osswald H, Hermes HH, Nabakowski G (1982) Role of adenosine in signal transmission of tubuloglomerular feedback. Kidney Int Suppl 12:S136–S142

    PubMed  CAS  Google Scholar 

  62. Massie BM, O’Connor CM, Metra M et al (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363:1419–1428

    Article  PubMed  Google Scholar 

  63. Oghlakian G, Klapholz M (2009) Vasopressin and vasopressin receptor antagonists in heart failure. Cardiol Rev 17:10–15

    Article  PubMed  Google Scholar 

  64. Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686

    PubMed  CAS  Google Scholar 

  65. Winton FR (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72:49–61

    PubMed  CAS  Google Scholar 

  66. Maxwell MH, Breed ES, Schwartz IL (1950) Renal venous pressure in chronic congestive heart failure. J Clin Invest 29:342–348

    Article  PubMed  CAS  Google Scholar 

  67. Jessup M, Costanzo MR (2009) The cardiorenal syndrome: do we need a change of strategy or a change of tactics? J Am Coll Cardiol 53:597–599

    Article  PubMed  Google Scholar 

  68. Joles JA, Bongartz LG, Gaillard CA, Braam B (2009) Renal venous congestion and renal function in congestive heart failure. J Am Coll Cardiol 54:1632; author reply 1632–1633

    Google Scholar 

  69. Blake WD, Wegria R et al (1949) Effect of increased renal venous pressure on renal function. Am J Physiol 157:1–13

    PubMed  CAS  Google Scholar 

  70. Gottschalk CW, Mylle M (1956) Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol 185:430–439

    PubMed  CAS  Google Scholar 

  71. Doty JM, Saggi BH, Sugerman HJ et al (1999) Effect of increased renal venous pressure on renal function. J Trauma 47:1000–1003

    Article  PubMed  CAS  Google Scholar 

  72. Semple SJ, De Wardener HE (1959) Effect of increased renal venous pressure on circulatory autoregulation of isolated dog kidneys. Circ Res 7:643–648

    PubMed  CAS  Google Scholar 

  73. Clausen G, Oien AH, Aukland K (1992) Myogenic vasoconstriction in the rat kidney elicited by reducing perirenal pressure. Acta Physiol Scand 144:277–290

    Article  PubMed  CAS  Google Scholar 

  74. Gudmundsson FF, Gislason HG, Myking OL, Viste A, Grong K, Svanes K (2002) Hormonal changes related to reduced renal blood flow and low urine output under prolonged increased intra-abdominal pressure in pigs. Eur J Surg 168:178–186

    Article  PubMed  Google Scholar 

  75. Kishimoto T, Maekawa M, Abe Y, Yamamoto K (1973) Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kidney Int 4:259–266

    Article  PubMed  CAS  Google Scholar 

  76. Bloomfield GL, Blocher CR, Fakhry IF, Sica DA, Sugerman HJ (1997) Elevated intra-abdominal pressure increases plasma renin activity and aldosterone levels. J Trauma 42:997–1004, discussion 1004–1005

    Google Scholar 

  77. van Onna M, Houben AJ, Kroon AA et al (2003) Asymmetry of renal blood flow in patients with moderate to severe hypertension. Hypertension 41:108–113

    Article  PubMed  CAS  Google Scholar 

  78. Bax L, Woittiez AJ, Kouwenberg HJ et al (2009) Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function: a randomized trial. Ann Intern Med 150(840–8):W150–W151

    Google Scholar 

  79. Wheatley K, Ives N, Gray R et al (2009) Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med 361:1953–1962

    Article  PubMed  Google Scholar 

  80. Wright JR, Shurrab AE, Cooper A, Kalra PR, Foley RN, Kalra PA (2005) Left ventricular morphology and function in patients with atherosclerotic renovascular disease. J Am Soc Nephrol 16:2746–2753

    Article  PubMed  Google Scholar 

  81. Emans ME, Van Der Putten K, Velthuis BK et al (2009) High prevalence of atherosclerotic renal artery stenosis in the cardiorenal syndrome; negative association with diabetes mellitus posterpresentatie. European Society of Cardiology, Barcelona

    Google Scholar 

  82. Kalra PA (2010) Renal revascularization for heart failure in patients with atherosclerotic renovascular disease. Nephrol Dial Transplant 25:661–663

    Article  PubMed  Google Scholar 

  83. Kane GC, Xu N, Mistrik E, Roubicek T, Stanson AW, Garovic VD (2009) Renal artery revascularization improves heart failure control in patients with atherosclerotic renal artery stenosis. Nephrol Dial Transplant 25:813–820

    Article  PubMed  Google Scholar 

  84. Wolf G (2008) Novel aspects of the renin-angiotensin-aldosterone-system. Front Biosci 13:4993–5005

    Article  PubMed  CAS  Google Scholar 

  85. Danser AH (2007) Novel drugs targeting hypertension: renin inhibitors. J Cardiovasc Pharmacol 50:105–111

    Article  PubMed  CAS  Google Scholar 

  86. Ma TK, Kam KK, Yan BP, Lam YY (2010) Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 160:1273–1292

    PubMed  CAS  Google Scholar 

  87. Muller DN, Luft FC (2008) Renin receptor blockade: a better strategy for renal protection than renin-angiotensin system inhibition? Curr Hypertens Rep 10:405–409

    Article  PubMed  CAS  Google Scholar 

  88. Burns KD (2007) The emerging role of angiotensin-converting enzyme-2 in the kidney. Curr Opin Nephrol Hypertens 16:116–121

    Article  PubMed  CAS  Google Scholar 

  89. Erdos EG, Yang HY (1967) An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci 6:569–574

    Article  PubMed  CAS  Google Scholar 

  90. Pellacani A, Brunner HR, Nussberger J (1994) Plasma kinins increase after angiotensin-converting enzyme inhibition in human subjects. Clin Sci (Lond) 87:567–574

    CAS  Google Scholar 

  91. Cruden NL, Witherow FN, Webb DJ, Fox KA, Newby DE (2004) Bradykinin contributes to the systemic hemodynamic effects of chronic angiotensin-converting enzyme inhibition in patients with heart failure. Arterioscler Thromb Vasc Biol 24:1043–1048

    Article  PubMed  CAS  Google Scholar 

  92. Haddad G, Amiri F, Garcia R (1997) Modulation of renal glomerular angiotensin II receptors by ace inhibition and AT1 receptor antagonism. Regul Pept 68:111–117

    Article  PubMed  CAS  Google Scholar 

  93. Rosivall L, Youngblood P, Navar LG (1986) Renal autoregulatory efficiency during angiotensin-converting enzyme inhibition in dogs on a low sodium diet. Ren Physiol 9:18–28

    PubMed  CAS  Google Scholar 

  94. Cupples WA (1993) Angiotensin II conditions the slow component of autoregulation of renal blood flow. Am J Physiol 264:F515–F522

    PubMed  CAS  Google Scholar 

  95. Sorensen CM, Leyssac PP, Skott O, Holstein-Rathlou NH (2000) Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow. Am J Physiol Regul Integr Comp Physiol 279:R1017–R1024

    PubMed  CAS  Google Scholar 

  96. Ito H, Nagatomo Y, Kohno T, et al (2010) Differential effects of carvedilol and metoprolol on renal function in patients with heart failure. Circ J 74:1578–1583

    Article  PubMed  CAS  Google Scholar 

  97. Heitmann M, Davidsen U, Stokholm KH, Rasmussen K, Burchardt H, Petersen EB (2002) Renal and cardiac function during alpha1-beta-blockade in congestive heart failure. Scand J Clin Lab Invest 62:97–104

    Article  PubMed  CAS  Google Scholar 

  98. Preston RA, O’Connor DT, Stone RA (1979) Prazosin and renal hemodynamics: arteriolar vasodilation during therapy of essential hypertension in man. J Cardiovasc Pharmacol 1:277–286

    Article  PubMed  CAS  Google Scholar 

  99. Magorien RD, Hermiller JB, Unverferth DV, Leier CV (1985) Regional hemodynamic effects of clonidine in congestive heart failure. J Cardiovasc Pharmacol 7:91–96

    Article  PubMed  CAS  Google Scholar 

  100. Schlatter E, Salomonsson M, Persson AE, Greger R (1989) Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+2Cl-K+ cotransport. Pflugers Arch 414:286–290

    Article  PubMed  CAS  Google Scholar 

  101. Oppermann M, Hansen PB, Castrop H, Schnermann J (2007) Vasodilatation of afferent arterioles and paradoxical increase of renal vascular resistance by furosemide in mice. Am J Physiol Renal Physiol 293:F279–F287

    Article  PubMed  CAS  Google Scholar 

  102. Wang X, Breaks J, Loutzenhiser K, Loutzenhiser R (2007) Effects of inhibition of the Na+/K+/2Cl− cotransporter on myogenic and angiotensin II responses of the rat afferent arteriole. Am J Physiol Renal Physiol 292:F999–F1006

    Article  PubMed  CAS  Google Scholar 

  103. Paterna S, Parrinello G, Cannizzaro S et al (2009) Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol 103:93–102

    Article  PubMed  CAS  Google Scholar 

  104. Good JM, Brady AJ, Noormohamed FH, Oakley CM, Cleland JG (1994) Effect of intense angiotensin II suppression on the diuretic response to furosemide during chronic ACE inhibition. Circulation 90:220–224

    PubMed  CAS  Google Scholar 

  105. Motwani JG, Fenwick MK, Morton JJ, Struthers AD (1992) Furosemide-induced natriuresis is augmented by ultra-low-dose captopril but not by standard doses of captopril in chronic heart failure. Circulation 86:439–445

    PubMed  CAS  Google Scholar 

  106. Dikshit K, Vyden JK, Forrester JS, Chatterjee K, Prakash R, Swan HJ (1973) Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med 288:1087–1090

    Article  PubMed  CAS  Google Scholar 

  107. Beck FX, Sone M, Dorge A, Thurau K (1992) Effect of loop diuretics on organic osmolytes and cell electrolytes in the renal outer medulla. Kidney Int 42:843–850

    Article  PubMed  CAS  Google Scholar 

  108. MacFadyen RJ, Ng Kam Chuen MJ, Davis RC (2010) Loop diuretic therapy in left ventricular systolic dysfunction: has familiarity bred contempt for a critical but potentially nephrotoxic cardio renal therapy? Eur J Heart Fail 12:649–652

    Article  PubMed  CAS  Google Scholar 

  109. Slagman MC, Navis G, Laverman GD (2010) Reversible effects of diuretics added to renin-angiotensin-aldosterone system blockade: impact on interpretation of long-term kidney function outcome. Am J Kidney Dis 56:601–602

    Article  PubMed  Google Scholar 

  110. Bakris GL, Weir MR (2000) Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch Intern Med 160:685–693

    Article  PubMed  CAS  Google Scholar 

  111. Felker GM, Lee KL, Bull DA et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364:797–805

    Article  PubMed  CAS  Google Scholar 

  112. Sihm I, Thygesen K, Krusell LR, Lederballe O (2000) Long-term renal and cardiovascular effects of antihypertensive treatment regimens based upon isradipine, perindopril and thiazide. Blood Press 9:346–354

    Article  PubMed  CAS  Google Scholar 

  113. Walsh JT, Andrews R, Curtis S, Evans A, Cowley AJ (1997) Effects of amlodipine in patients with chronic heart failure. Am Heart J 134:872–878

    Article  PubMed  CAS  Google Scholar 

  114. Drexler H, Depenbusch JW, Truog AG, Zelis R, Flaim SF (1985) Effects of diltiazem on cardiac function and regional blood flow at rest and during exercise in a conscious rat preparation of chronic heart failure (myocardial infarction). Circulation 71:1262–1270

    Article  PubMed  CAS  Google Scholar 

  115. Binetti G, Rubino I, Varani E et al (1989) Felodipine in severe chronic congestive heart failure: acute effects on central hemodynamics and regional blood flow distribution. Cardiovasc Drugs Ther 3:903–911

    Article  PubMed  CAS  Google Scholar 

  116. Mitrovic V, Seferovic P, Dodic S et al (2009) Cardio-renal effects of the A1 adenosine receptor antagonist SLV320 in patients with heart failure. Circ Heart Fail 2:523–531

    Article  PubMed  CAS  Google Scholar 

  117. Veeraveedu PT, Watanabe K, Ma M et al (2008) Effects of V2-receptor antagonist tolvaptan and the loop diuretic furosemide in rats with heart failure. Biochem Pharmacol 75:1322–1330

    Article  PubMed  CAS  Google Scholar 

  118. Costello-Boerrigter LC, Boerrigter G, Cataliotti A, Harty GJ, Burnett JC Jr (2010) Renal and anti-aldosterone actions of vasopressin-2 receptor antagonism and B-type natriuretic peptide in experimental heart failure. Circ Heart Fail 3:412–419

    Article  PubMed  CAS  Google Scholar 

  119. Mathier MA, Ishizawar D (2010) Bosentan. Expert Opin Pharmacother 11:1023–1034

    Article  PubMed  CAS  Google Scholar 

  120. Hall JE, Coleman TG, Guyton AC, Kastner PR, Granger JP (1981) Control of glomerular filtration rate by circulating angiotensin II. Am J Physiol 241:R190–R197

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Branko Braam is a New Investigator supported by the Heart and Stroke Foundation of Canada. This work has also been supported by a grant from the Dutch Heart Foundation. Current work on renal hemodynamics by Drs. Cupples and Braam is supported by the Canadian Institute of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Braam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braam, B., Cupples, W.A., Joles, J.A. et al. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev 17, 161–175 (2012). https://doi.org/10.1007/s10741-011-9246-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-011-9246-2

Keywords

Navigation