Management of Acute and Late Endocrine Effects Following Childhood Cancer Treatment

  • Megan Oberle
  • Jill L. Brodsky
  • Adda Grimberg


Advancements in the treatment of pediatric cancer have led to increased survival rates. The majority of adult survivors of pediatric cancers will develop a chronic disease, including endocrine disorders. The type and prevalence of the acute and late endocrine effects of cancer treatment vary widely by cancer type, treatment, and patient characteristics (age, gender, comorbidities). This chapter will describe the endocrine effects of treatment for childhood cancer both during and after treatment by endocrine system. In addition, we will review the current literature on pathophysiology, diagnosis, and treatment of the endocrine effects commonly seen in survivors of pediatric cancers.


Cancer survivors Pediatric cancer Late effects Acute effects Chemotherapy Cranial radiation Diabetes insipidus Growth failure Thyroid dysfunction Delayed puberty Precocious puberty Fertility preservation Adrenal insufficiency Obesity Bone health 


  1. 1.
    Keegan THM, Ries LAG, Barr RD, et al. National Cancer Institute Next Steps for Adolescent and Young Adult Oncology Epidemiology Working Group. Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer. 2016;122(7):1009–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Hudson MM, Ness KK, Gurney JG, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309:2371–81.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chao C, Xu L, Bell E, Cooper R, Mueller L. Long-term health outcomes in survivors of childhood cancer diagnosed between 1990 and 2000 in a large US integrated health care system. J Pediatr Hematol Oncol. 2016;38:123–30.PubMedCrossRefGoogle Scholar
  4. 4.
    WHB W, CJH K. Endocrinopathy after Childhood Cancer Treatment. Endocr Dev. 2009;15:159–80.CrossRefGoogle Scholar
  5. 5.
    Diller L, Chow EJ, Gurney GJ, et al. Chronic disease in the Childhood Cancer Survivor Study cohort: a review of published findings. J Clin Oncol. 2009;27:2339–55.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chemaitilly W, Hudson M. Updated on endocrine and metabolic therapy-related late effects observed in survivors of childhood neoplasia. Curr Opin Endocrinol. 2014;21(1):71–6.CrossRefGoogle Scholar
  7. 7.
    Thomasett MJ, Conte FA, Kaplan SI, et al. Endocrine and neurologic outcome in childhood craniopharyngioma: review of effect of treatment in 42 patients. J Pediatr. 1980;97:728–35.CrossRefGoogle Scholar
  8. 8.
    De Vile CJ, Grant DB, Hayward RD, et al. Growth and endocrine sequelae of craniopharyngioma. Arch Dis Child. 1996;75:108–14.CrossRefGoogle Scholar
  9. 9.
    Karavitaki N, Brufani C, Warner JT, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol. 2005;62:397–409.CrossRefGoogle Scholar
  10. 10.
    Dabas A, Batra A, Khadgawat R, Jyotsna V, Bakhshi S. Growth and endocrinal abnormalities in pediatric langerhans cell histiocytosis. Indian J Pediatr. 2016;83(7):657–60. [Ahead of Print].PubMedCrossRefGoogle Scholar
  11. 11.
    Seckl JR, Dunger DB, Lightman SL. Neurohypophyseal peptide function during early postoperative diabetes insipidus. Brain. 1987;110:737–46.PubMedCrossRefGoogle Scholar
  12. 12.
    Rivkees S, Dunbar N, Wilson T. The management of central diabetes insipidus in infancy: desmopressin, low renal solute load formula, thiazide diuretics. J Pediatr Endocrinol Metab. 2007;20:459–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Palmer B. Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab. 2003;14:182–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Cerdà-Esteve M, Cuadrado-Godia E, Chillaron JJ, Pont-Sunyer C, Cucurella G, Fernandez M, et al. Cerebral salt wasting syndrome: review. Eur J Intern Med. 2008;19:249–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Oh JY, Shin JI. Syndrome of inappropriate antidiuretic hormone secretion and cerebral/renal salt wasting syndrome: similarities and differences. Front Pediatr. 2015;2(146):1–5.Google Scholar
  16. 16.
    Cortina G, Hansford J, Duke T. Brief report: central diabetes insipidus and cisplatin-induced renal salt wasting syndrome: a challenging combination. Pediatr Blood Cancer. 2016;63:925–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Kurzberg J, Dennis VW, Kinney TE. Cisplatin-induced renal salt wasting. Med Pediatr Oncol. 1984;12:150–4.CrossRefGoogle Scholar
  18. 18.
    Hamdi T, Latta S, Jallad B, Kheir F, Alhosaini MN, Patel A. Cisplatin-induced renal salt wasting syndrome. South Med J. 2010;103:793–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng YC, Lin YC, Chen JS, Chen CH, Deng ST. Cisplatin-induced hyponatremia leading to a seizure and coma. A case report. Chang Gung Med J. 2011;34(6 Suppl):48–51.PubMedGoogle Scholar
  20. 20.
    Jeon YJ, Lee HY, Jung IA, Cho WK, Cho B, Suh BK. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports. Ann Pediatr Endocrinol Metab. 2015;20:220–5.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gonzalez Briceno L, Grill J, Bourdeaut F, et al. Water and electrolyte disorders at long-term post-treatment follow-up in paediatric patients with suprasellar tumours include unexpected persistent cerebral salt-wasting syndrome. Horm Res Paediatr. 2014;82:364–71.PubMedCrossRefGoogle Scholar
  22. 22.
    Andrassy R, Chwals W. Nutritional support of the pediatric oncology patient. Nutrition. 1998;14:124–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Rickard KA, Grosfeld JL, Kirksey A, et al. Reversal of protein-energy malnutrition in children during treatment of advanced neoplastic disease. Ann Surg. 1979;190:771–81.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zhang F, Liu S, Chung M, Kelly M. Growth patterns during and after treatment in patients with pediatric ALL: a meta-analysis. Pediatr Blood Cancer. 2015;62:1452–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhang F, Rodday A, Kelly M, et al. Predictors of being overweight or obese in survivors of pediatric acute lymphoblastic leukemia, (ALL). Pediatr Blood Cancer. 2014;61:1263–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Fuemmeler B, Oendzich M, Clark K, et al. Diet, physical activity, and body composition changes during the first year of treatment for childhood acute leukemia and lymphoma. J Pediatr Hematol Oncol. 2013;35(6):437–43.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lindemulder S, Stork L, Bostrom B, et al. Survivors of standard risk acute lymphoblastic leukemia do not have increased risk of overweight and obesity compared to non-cancer peers: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62:1035–41.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJL. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;(3):4–6.Google Scholar
  29. 29.
    Willi SM, Kennedy A, Wallace P, et al. Troglitazone antagonizes metabolic effects of glucocorticoids in humans: effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids, and leptin. Diabetes. 2002;51:2895–902.PubMedCrossRefGoogle Scholar
  30. 30.
    Pagano G, Cavallo-Perin P, Cassader M, et al. An in vivo and in vitro study of the mechanisms of prednisone-induced insulin resistance in healthy subjects. J Clin Invest. 1983;72:1814–20.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest. 1997;99:414–23.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ranta F, Avram D, Berchtold S, et al. Dexamethasone induces cell death in insulin secreting cells, an effect reversed by exendin-4. Diabetes. 2006;55:1380–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Hoffmeister PA, Storer BE, Sanders JE. Diabetes mellitus in long-term survivors of pediatrics hematopoietic cell transplantation. J Pediatr Hematol Oncol. 2004;26:81–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Esbenshade A, Simmons J, Koyama T, Lindell R, Friedman D. Obesity and insulin resistance in pediatric acute lymphoblastic leukemia worsens during maintenance therapy. Pediatr Blood Cancer. 2013;60:1287–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Kojima C, Kubota M, Nagai A, Adachi S, Watananbe K, Nakahata T. Adipocytokines in childhood cancer survivors and correlation with metabolic syndrome components. Pediatr Int. 2013;55:438–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Yeshayahu Y, Koltin D, Hamilton J, Nathan PC, Urbach S. Medication-induced diabetes during induction treatment for ALL, an early marker for future metabolic risk? Pediatr Diabetes. 2015;16:104–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Kasayama S, Tanaka T, Hashimoto K, et al. Efficacy of glimepiride for the treatment of diabetes occurring during glucocorticoid therapy. Diabetes Care. 2002;25:2359–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Voytovich MH, Haukereid C, Hjelmesaeth J, et al. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin Transpl. 2007;21:246–51.CrossRefGoogle Scholar
  39. 39.
    Hanefeld M, Fischer S, Schulze J, et al. Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care. 1991;14:732–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Baldwin D, Duffin KE. Rosiglitazone treatment of diabetes mellitus after solid organ transplantation. Transplantation. 2004;77:1009–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Willi SM, Kennedy A, Brant BP, et al. Effective use of thiazolidinediones for the treatment of glucocorticoid-induced diabetes. Diabetes Res Clin Pract. 2002;58:87–96.PubMedCrossRefGoogle Scholar
  42. 42.
    Davies M, Lavalle-Gonzalez F, Storms F, et al. Initiation of insulin glargine therapy in type 2 diabetes subjects suboptimally controlled on oral antidiabetic agents: results from the AT.LANTUS trial. Diabetes Obes Metab. 2008;10:387–99.PubMedCrossRefGoogle Scholar
  43. 43.
    Clore J. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15:469–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Streck WF, Lockwood DH. Pituitary adrenal recovery following short-term suppression with corticosteroids. Am J Med. 1979;66:910–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Joshi M, Whitelaw B, Palaomar M, Wu Y, Carroll P. Immune checkpoint inhibitor related hypophysitis and endocrine dysfunction: clinical review. Clin Endocrinol. 2016;85(3):331–9. [Ahead of print].CrossRefGoogle Scholar
  46. 46.
    Corsello M, Barnabei AM, Marchetti P, De Vecchis L, Salvatori R, Torino F. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013;98:1361–75.PubMedCrossRefGoogle Scholar
  47. 47.
    Bouley R, Hasler U, Lu H, et al. Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:266–78.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Jakobsson B, Berg U. Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus. Acta Paediatr. 1994;83:522–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Alon U, Chan JC. Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol. 1985;5:9–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Majzoub JA, Srivatsa A. Diabetes insipidus: clinical and basic aspects. Pediatr Endocrinol Rev. 2006;4(Suppl 1):60–5.PubMedGoogle Scholar
  51. 51.
    Ness KK, Krull KR, Hones KE, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer. A report from the St. Jude Lifetime cohort study. J Clin Oncol. 2013;31:4496–503.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Shalet SM, Gibson B, Swindell R, et al. Effect of spinal irradiation on growth. Arch Dis Child. 1987;62:461–4.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mulder RL, Kremer LC, van Santen HM, et al. Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancer survivors: a systematic review. Cancer Treat Rev. 2009;35:616–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Brauner R, Fontoura M, Zucker JM, et al. Growth and growth hormone secretion after bone marrow transplantation. Arch Dis Child. 1993;68:458–63.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Thomas BC, Stanhope R, Leiper AD. Gonadotropin releasing hormone analogue and growth hormone therapy in precocious and premature puberty following cranial irradiation for acute lymphoblastic leukemia. Horm Res. 1993;39:25–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Gleeson HK, Stoeter R, Ogilvy-Stuart AL, et al. Improvements in final height over 25 years in growth hormone (GH)-deficient childhood survivors of brain tumors receiving GH replacement. J Clin Endocrinol Metab. 2003;88:3682–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Gurney JG, Ness KK, Stovall M, et al. Final height and body mass index among adult survivors of childhood brain cancer: childhood cancer survivor study. J Clin Endocrinol Metab. 2003;88:4731–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Bruzzi P, Predieri B, Corrias A, et al. Final height and body mass index in adult survivors of childhood acute lymphoblastic leukemia treated without cranial radiotherapy: a retrospective longitudinal multicenter Italian study. BMC Pediatr. 2014;14:236.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Knijnenburg S, Raemaekers S, van den Berg H, et al. Final height in survivors of childhood cancer compared with height standard deviation scores at diagnosis. Ann Oncol. 2013;24:119–1126.CrossRefGoogle Scholar
  60. 60.
    Vandecruys E, Chooge C, Craen M, Benoit Y, De Schepper J. Longitudinal linear growth and final adult height is impaired in childhood acute lymphoblastic leukemia survivors after treatment without cranial irradiation. J Pediatr. 2013;163:268–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Chow E, Liu W, Srivastava K. Differential effects of radiotherapy on growth and endocrine function among acute leukemia survivors: a childhood cancer survivor study report. Pediatr Blood Cancer. 2013;60:1101–15.Google Scholar
  62. 62.
    Sklar CA, Constine LS. Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;31:1113–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Laughton SJ, Merchant TE, Sklar CA, et al. Endocrine outcomes for children with embryonal brain tumors after risk adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem cell rescue on the SJMB-96 trial. J Clin Oncol. 2008;26:1112–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Chemaitilly W, Li Z, Hunag S, et al. Anterior hypopituitarism in adult survivors of childhood cancers treated with cranial radiotherapy: a report from the St. Jude Lifetime Cohort. J Clin Oncol. 2015;33:492–500.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Costin G. Effects of low-dose cranial radiation on growth hormone secretory dynamics and hypothalamic-pituitary function. Am J Dis Child. 1988;142:847–52.PubMedGoogle Scholar
  66. 66.
    Ogilvy-Stuart AL, Clayton PE, Shalet SM. Cranial irradiation and early puberty. J Clin Endocrinol Metab. 1994;78:1282–6.PubMedGoogle Scholar
  67. 67.
    Brauner R, Czernichow P, Rappaport R. Greater susceptibility to hypothalamopituitary irradiation in younger children with acute lymphoblastic leukemia. J Pediatr. 1986;108:332–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Ogilvy-Stuart AL, Clark DJ, Wallace WH, et al. Endocrine deficit after fractionated total body irradiation. Arch Dis Child. 1992;67:1107–10.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Shalet SM, Beardwell CG, Jones PH, et al. Growth hormone deficiency after treatment of acute leukaemia in children. Arch Dis Child. 1976;51:489–93.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kirk JA, Raghupathy P, Stevens MM, et al. Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukaemia. Lancet. 1987;1:190–19.PubMedCrossRefGoogle Scholar
  71. 71.
    Darzy KH, Pezzoli SS, Thorner MO, Shalet SM. The dynamics of growth hormone (GH) secretion in adult cancer survivors with severe GH deficiency acquired after brain irradiation in childhood for nonpituitary brain tumors: evidence for preserved pulsatility and diurnal variation with increased secretory disorderliness. J Clin Endocrinol Metab. 2005;90:2794–803.PubMedCrossRefGoogle Scholar
  72. 72.
    Ogilvy-Stuart AL, Wallace WH, Shalet SM. Radiation and neuroregulatory control of growth hormone secretion. Clin Endocrinol. 1994;41:163–8.CrossRefGoogle Scholar
  73. 73.
    Jorgensen EV, Schwartz ID, Hvizdala E, et al. Neurotransmitter control of growth hormone secretion in children after cranial radiation therapy. J Pediatr Endocrinol. 1993;6:131–42.PubMedGoogle Scholar
  74. 74.
    Darzy K, Shalet SM. Hypopituitarism as a consequence of brain tumours and radiotherapy. Pituitary. 2005;8:203–11.PubMedCrossRefGoogle Scholar
  75. 75.
    Darzy KH, Shalet SM. Hypopituitarism following radiotherapy revisited. Endocr Dev. 2009;15:1–24.PubMedCrossRefGoogle Scholar
  76. 76.
    Darzy KH. Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab. 2009;5:88–99.PubMedCrossRefGoogle Scholar
  77. 77.
    Chrousos GP, Poplack D, Brown T, et al. Effects of cranial radiation on hypothalamic-adenohypophyseal function: abnormal growth hormone secretory dynamics. J Clin Endocrinol Metab. 1982;54:1135–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Spoudeas HA, Hindmarsh PC, Matthews DR, et al. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J Endocrinol. 1996;150:329–42.PubMedCrossRefGoogle Scholar
  79. 79.
    Blatt J, Bercu BB, Gillin JC, et al. Reduced pulsatile growth hormone secretion in children after therapy for acute lymphoblastic leukemia. J Pediatr. 1984;104:182–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Darzy KH, Pezzoli SS, Thorner MO, et al. Cranial irradiation and growth hormone neurosecretory dysfunction: a critical appraisal. J Clin Endocrinol Metab. 2007;92:1666–72.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Bercu BB, Root AW, Shulman DI. Preservation of dopaminergic and alpha-adrenergic function in children with growth hormone neurosecretory dysfunction. J Clin Endocrinol Metab. 1986;63:968–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Bercu BB, Shulman D, Root AW, et al. Growth hormone (GH) provocative testing frequently does not reflect endogenous GH secretion. J Clin Endocrinol Metab. 1986;63:709–16.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Crowne EC, Moore C, Wallace WH, et al. A novel variant of growth hormone (GH) insufficiency following low dose cranial irradiation. Clin Endocrinol. 1992;36:59–68.CrossRefGoogle Scholar
  84. 84.
    Moell C, Garwicz S, Westgren U, et al. Suppressed spontaneous secretion of growth hormone in girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child. 1989;64:252–8.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tillmann V, Shalet SM, Price DA, et al. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation. Horm Res. 1998;50:71–7.PubMedGoogle Scholar
  86. 86.
    Mostoufi-Moab S, Grimberg A. Pediatric brain tumor treatment: growth consequences and their management. Pediatr Endocrinol Rev. 2010;8:6–17.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. J Clin Endocrinol Metab. 2000;85:3990–3.Google Scholar
  88. 88.
    Wilson T, Rose S, Cohen P, et al. Update of guidelines for the use of growth hormone in children: the Lawson Wilkins Pediatric Endocrinology Society Drug and Therapeutics Committee. J Pediatr. 2003;143:415–21.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Adan L, Sainte-Rose C, Souberbielle JC, et al. Adult height after growth hormone (GH) treatment for GH deficiency due to cranial irradiation. Med Pediatr Oncol. 2000;34:14–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Ogilvy-Stuart AL, Shalet S. Growth and puberty after growth hormone treatment after irradiation for brain tumours. Arch Dis Child. 1995;73:141–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Xu W, Janss AJ, Moshang T Jr. Adult height and sitting height in children surviving medulloblastoma. J Clin Endocrinol Metab. 2003;88:4677–81.PubMedCrossRefGoogle Scholar
  92. 92.
    Clayton PE, Shalet SM. The evolution of spine growth after irradiation. Clin Oncol. 1991;3:220–2.CrossRefGoogle Scholar
  93. 93.
    Wang ED, Drummond DS, Dormans JP, et al. Scoliosis in patients treated with growth hormone. J Pediatr Orthop. 1997;17:708–11.PubMedGoogle Scholar
  94. 94.
    Raman S, Grimberg A, Waguespack S, Miller B, Sklar C, Meacham L, Patterson B. Risk of neoplasia in pediatric patients receiving growth hormone therapy-a report from the Pediatric Endocrine Society Drug and Therapeutics Committee. J Clin Endocrinol Metab. 2015;100(6):2192–203.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sklar CA, Mertens AC, Mitby P, Occhiogrosso G, Qin J, Heller G, Yasui Y, Robison LL. Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2002;87:3136–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Leung W, Rose SR, Zhou Y, Hancock ML, Burstein S, Schriock EA, Lustig R, Danish RK, Evans WE, Hudson MM, Pui CH. Outcomes of growth hormone replacement therapy in survivors of childhood acute lymphoblastic leukemia. J Clin Oncol. 2002;20:2959–64.PubMedCrossRefGoogle Scholar
  97. 97.
    Swerdlow AJ, Reddingius RE, Higgins CD, et al. Growth hormone treatment of children with brain tumors and risk of tumor recurrence. J Clin Endocrinol Metab. 2000;85:4444–9.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Packer RJ, Boyett JM, Janss AJ, et al. Growth hormone replacement therapy in children with medulloblastoma: use and effect on tumor control. J Clin Oncol. 2001;19:480–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Cahe H, Kim D, Kim H. Growth hormone treatment and risk of malignancy. Korean J Pediatr. 2015;58(2):41–6.CrossRefGoogle Scholar
  100. 100.
    Wang Z, Chen H-L. Growth hormone treatment and risk of recurrence or development of secondary neoplasms in survivors of pediatric brain tumors. J Clin Neurosci. 2014;21:2155–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Ergun-Longmire B, Mertens A, Mitby P, et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab. 2006;91:3494–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Patterson BC, Chen Y, Sklar CA, Neglia J, Yasui Y, Mertens A, Armstrong GT, Meadows A, Stovall M, Robison LL, Meacham LR. Growth hormone exposure as a risk factor for the development of subsequent neoplasms of the central nervous system: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2014;99(6):2030–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bell J, Parker K, Swinford R, et al. Long-term safety of recombinant human growth hormone in children. J Clin Endorcinol Metab. 2009;95:167–77.CrossRefGoogle Scholar
  104. 104.
    Holm K, Nysom K, Rasmussen MH, et al. Growth, growth hormone and final height after BMT. Possible recovery of irradiation-induced growth hormone insufficiency. Bone Marrow Transplant. 1996;18:163–70.PubMedGoogle Scholar
  105. 105.
    Couto-Silva AC, Trivin C, Esperou H, et al. Changes in height, weight and plasma leptin after bone marrow transplantation. Bone Marrow Transplant. 2000;26:1205–10.PubMedCrossRefGoogle Scholar
  106. 106.
    Gleeson HK, Gattamaneni HR, Smethurst L, et al. Reassessment of growth hormone status is required at final height in children treated with growth hormone replacement after radiation therapy. J Clin Endocrinol Metab. 2004;89:662–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Link K, Moell C, Garwicz S, et al. Growth hormone deficiency predicts cardiovascular risk in young adults treated for acute lymphoblastic leukemia in childhood. J Clin Endocrinol Metab. 2004;89:5003–12.PubMedCrossRefGoogle Scholar
  108. 108.
    Murray RD, Darzy KH, Gleeson HK, et al. GH deficient survivors of childhood cancer: GH replacement during adult life. J Clin Endocrinol Metab. 2002;87:129–35.PubMedCrossRefGoogle Scholar
  109. 109.
    Mukherjee A, Tolhurst-Cleaver S, Ryder WD, et al. The characteristics of quality of life impairment in adult growth hormone (GH)-deficient survivors of cancer and their response to GH replacement therapy. J Clin Endocrinol Metab. 2005;90:1542–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Follin C, Thile’n U, Ahre’n B, et al. Improvement in cardiac systolic function and reduced prevalence of metabolic syndrome after two years of growth hormone (GH) treatment in GH-deficient adult survivors of childhood-onset acute lymphoblastic leukemia. J Clin Endocrinol Metab. 2006;91:1872–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Petryk A, Baker S, Frohnert B, et al. Blunted response to growth hormone stimulation test is associated with unfavorable cardiovascular risk factor profile in childhood cancer survivors. Pediatr Blood Cancer. 2013;60:467–73.PubMedCrossRefGoogle Scholar
  112. 112.
    Cook D, Yuen K, Biller B, et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in growth hormone-deficient adults and transition patients – 2009 update. Endocr Pract. 2009;15(Suppl 2):1–29.CrossRefPubMedGoogle Scholar
  113. 113.
    Mostoufi-Moab S, Isaacoff E, Spiegel D, et al. Childhood cancer survivors exposed to total body irradiation are at significant risk for slipped capital femoral epiphysis during recombinant growth hormone therapy. Pediatr Blood Cancer. 2013;60:1766–71.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Marcus KJ, Haas-Kogan D. Pediatric radiation oncology. In: Orkin SH, Fisher DE, Look AT, Lux SE, Ginsburg D, Nathan DG, editors. Oncology of infancy and childhood. Philadelphia: Saunders Elsevier; 2009. p. 241–56.CrossRefGoogle Scholar
  115. 115.
    Jereczek-Fossa BA, Alterio D, Jassem J, Gibelli B, Tradati N, Orecchia R. Radiotherapy-induced thyroid disorders. Cancer Treat Rev. 2004;30:369–84.PubMedCrossRefGoogle Scholar
  116. 116.
    Hancock SL, McDougall IR, Constine LS. Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys. 1995;31:1165–70.PubMedCrossRefGoogle Scholar
  117. 117.
    Caglar A, Oguz A, Pinarli FG, et al. Thyroid abnormalities in survivors of childhood cancer. J Clin Res Pediatr Endocinol. 2014;6(3):144–51.CrossRefGoogle Scholar
  118. 118.
    Oudin C, Auguier P, Betrand Y, et al. Late thyroid complications in childhood acute leukemia survivors: an LEA study. Haematological. 2016;101(6):747–56.CrossRefGoogle Scholar
  119. 119.
    Chin HB, Jacobson MH, Interrnte JD, Mertens AC, Spender JB, Howards PP. Hypothyroidism after cancer and the ability to meet reproductive goals among a cohort of young adult female cancer survivors. Fertil Steril. 2016;105:202–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Rose SR, Lustig RH, Pitukcheewanot P, et al. Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab. 1999;84:4472–9.PubMedGoogle Scholar
  121. 121.
    Kaplan MM, Garnick MB, Gelber R, et al. Risk factors for thyroid abnormalities after neck irradiation for childhood cancer. Am J Med. 1983;74:272–80.PubMedCrossRefGoogle Scholar
  122. 122.
    Eaton B, Esiashvili N, Patterson B. Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma. Neuro-Oncology. 2015;0:1–7.Google Scholar
  123. 123.
    Schmiegelow M, Feldt-Rasmussen U, Rasmussen HK, et al. A population based study of thyroid function after radiotherapy and chemotherapy for childhood brain tumor. J Clin Endocrinol Metab. 2003;88:136–40.PubMedCrossRefGoogle Scholar
  124. 124.
    Picco P, Garaventa A, Claudiani F, et al. Primary hypothyroidism as a consequence of 131-I-metaiodobenzylguanidine treatment for children with neuroblastoma. Cancer. 1995;76:1662–4.PubMedCrossRefGoogle Scholar
  125. 125.
    Clement SC, van Eck-Smit BL, van Trotsenburg AS, Kremer LC, Tytgat GA, van Santen HM. Long-term follow-up of the thyroid gland after treatment with 131 I-Metaiodobenzylguanidine in children with neuroblastoma: importance of continuous surveillance. Pediatr Blood Cancer. 2013;60:1833–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Laverdiere C, Cheung NK, Kushner BH, et al. Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer. 2005;45:324–32.PubMedCrossRefGoogle Scholar
  127. 127.
    Chemaitilly W, Sklar CA. Endocrine complications in long-term survivors of childhood cancers. Endocr Relat Cancer. 2010;17:R141–59.PubMedCrossRefGoogle Scholar
  128. 128.
    Reulen RC, Frobisher C, Winter D, et al. Long-term risks of subsequent primary neoplasms among survivors of childhood cancer. JAMA. 2011;305:2311–91.PubMedCrossRefGoogle Scholar
  129. 129.
    De Vathaire F, Haddy N, Allodji RS, et al. Thyroid radiation dose and other risk factors of thyroid carcinoma following childhood cancer. J Clin Endocrinol Metab. 2015;100(11):4282–90.PubMedCrossRefGoogle Scholar
  130. 130.
    Inskip PD, Sigurdson AJ, Veiga L, et al. Radiation-related new primary solid cancers in the Childhood Cancer Survivor Study: comparative radiation dose response and modification of treatment effects. Radiat Oncol. 2015;94(4):800–7.Google Scholar
  131. 131.
    Acharya S, Sarafoglou K, LaQuaglia M, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer. 2003;97:2397–403.PubMedCrossRefGoogle Scholar
  132. 132.
    Bounacer A, Wicker R, Schlumberger M, et al. Oncogenic rearrangements of the ret proto-oncogene in thyroid tumors induced after exposure to ionizing radiation. Biochimie. 1997;79:619–23.PubMedCrossRefGoogle Scholar
  133. 133.
    Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86:3211–6.PubMedGoogle Scholar
  134. 134.
    The Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers. 2013. Available at: Accessed June 2016.
  135. 135.
    Brignardello E, Corrias A, Isolato G, et al. Ultrasound screening for thyroid carcinoma in childhood cancer survivors: a case series. J Clin Endocrinol Metab. 2008;93:4840–3.PubMedCrossRefGoogle Scholar
  136. 136.
    Argwal C, Guthrie L, Sturm M, et al. Childhood cancer survivors and with and without thyroid radiation exposure. J Pediatr Hematol Oncol. 2016;38:43–8.CrossRefGoogle Scholar
  137. 137.
    Li Z, Franklin J, Zelcer S, Sexton T, Husein M. Ultrasound surveillance for thyroid malignancies in survivors of childhood cancer following radiotherapy: a single institutional experience. Thyroid. 2014;12:1796–805.CrossRefGoogle Scholar
  138. 138.
    Oberfield S, Soranno D, Nirenberg A, et al. Age at onset of puberty following high-dose central nervous system radiation therapy. Arch Pediatr Adolesc Med. 1996;150:589–92.PubMedCrossRefGoogle Scholar
  139. 139.
    Roth C, Schmidberger H, Schaper O, et al. Cranial irradiation of female rats causes dose-dependent and age-dependent activation or inhibition of pubertal development. Pediatr Res. 2000;47:586–91.PubMedCrossRefGoogle Scholar
  140. 140.
    Roth C, Schmidberger H, Lakomek M, et al. Reduction of gamma-aminobutyric acid-ergic neurotransmission as a putative mechanism of radiation induced activation of the gonadotropin releasing-hormone-pulse generator leading to precocious puberty in female rats. Neurosci Lett. 2001;297:45–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Lannering B, Jansson C, Rosberg S, et al. Increased LH and FSH secretion after cranial irradiation in boys. Med Pediatr Oncol. 1997;29:280–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stanford: Stanford University Press; 1959.Google Scholar
  143. 143.
    Partsch CJ, Sippell WG. Treatment of central precocious puberty. Best Pract Res Clin Endocrinol Metab. 2002;16:165–89.PubMedCrossRefGoogle Scholar
  144. 144.
    Eugster EA, Clarke W, Kletter GB, et al. Efficacy and safety of histrelin subdermal implant in children with central precocious puberty: a multicenter trial. J Clin Endocrinol Metab. 2007;92:1697–704.PubMedCrossRefGoogle Scholar
  145. 145.
    Carel JC, Eugster EA, Rogol A, Ghizzoni L, Palmert MR, On behalf of the ESPE-LWPES GnRH Analogs Consensus Conference Group. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics. 2009;123:e752–62.PubMedCrossRefGoogle Scholar
  146. 146.
    Diaz-Thomas A, Shulman D. Use of aromatase inhibitors in children and adolescents: what's new? Curr Opin Pediatr. 2010;22:501–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Shalitin S, Gal M, Goshen Y, et al. Endocrine outcome in long-term survivors of childhood brain tumors. Horm Res Paediatr. 2011;76(2):113–22.PubMedCrossRefGoogle Scholar
  148. 148.
    Constantine LS, Wolf PD, CAnn D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328:87–94.CrossRefGoogle Scholar
  149. 149.
    Armstrong GT, Whitton JA, Gajjar A, et al. Abnormal timing of menarche in survivors of central nervous system tumors: a report from the Childhood Cancer Survivor Study. Cancer. 2009;115:2562–70.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Byrne J. Infertility and premature menopause in childhood cancer survivors. Med Pediatr Oncol. 1999;33:24–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Sklar CA. Maintenance of ovarian function and risk of premature menopause related to cancer treatment. J Natl Cancer Inst Monogr. 2005;34:25–7.CrossRefGoogle Scholar
  152. 152.
    Dewire M, Green D, Sklar C, et al. Pubertal development and primary ovarian insufficiency in female survivors of embryonal brain tumors following risk-adapted craniospinal irradiation and adjuvant chemotherapy. Pediatr BloodCancer. 2015;62:329–34.Google Scholar
  153. 153.
    Thomas-Teinturier C, El Fayech C, Oberlin O, et al. Age at menopause and its influencing factors in a cohort of survivors of childhood cancer: earlier, but rarely premature. Hum Reprod. 2013;28(2):488–95.PubMedCrossRefGoogle Scholar
  154. 154.
    Balachander S, Dunkel I, Khakoo Y, Woldem S, Allen J, Skylar C. Ovarian function in survivors of childhood medulloblastoma: impact of reduced dose craniospinal irradiation and high-dose chemotherapy with autologous stem cell rescue. Pediatr Blood Cancer. 2015;62:317–21.CrossRefGoogle Scholar
  155. 155.
    Pfitzer C, Chen C, Wessel T, et al. Dynamics of fertility impairment in childhood brain tumor survivors. J Cancer Res Clin Oncol. 2014;140:1769–7.CrossRefGoogle Scholar
  156. 156.
    Raciborska A, Bailska K, Filipp F, et al. Ovarian function in female survivors after multimodal Ewing sarcoma therapy. Pediatr Blood Cancer. 2015;62:341–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Clement S, Kraal C, van Eck-Smit B, van den Bos C, Kremer L, Tytgat C, van Santen H. Primary ovarian insufficiency in children after treatment with 131 I-metaiodobenzylguanidine for neuroblastoma: report of the first two cases. J Clin Endocrinol Metab. 2014;99(1):E112–6.PubMedCrossRefGoogle Scholar
  158. 158.
    Kenney LB, Cohen LE, Shnorhavorian M, et al. Male reproductive health after childhood, adolescent, and young adult cancer: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(7):3408–016.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Metzger ML, Meacham LR, Patterson B, et al. Female reproductive health after childhood, adolescent, and young adult cancers: guideline for the assessment and management of female reproductive complications. J Clin Oncol. 2013;31(9):1239–47.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Damewood MD, Grochow LB. Prospects for fertility after chemotherapy or radiation for neoplastic disease. Fertil Steril. 1986;45:443–59.PubMedCrossRefGoogle Scholar
  161. 161.
    Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Repod. 2003;18:117–21.CrossRefGoogle Scholar
  162. 162.
    Balis FM, Poplack DG. Cancer chemotherapy. In: Nathan DG, Oski FA, editors. Hematology of infancy and childhood. 4th ed. Philadelphia: Saunders; 1976. p. 1223–9.Google Scholar
  163. 163.
    Chemaitilly W, Mertens A, Mitby P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Bhasin S, Jameson JL. Disorders of the testes and male reproductive system. In: Larry Jameson J, editor. Harrison’s endocrinology. New York: McGraw Hill; 2006. p. 173–94.Google Scholar
  165. 165.
    Simon B, Lee S, Partridge AH, et al. Preserving fertility after cancer. CA Cancer J Clin. 2005;55:211–28.PubMedCrossRefGoogle Scholar
  166. 166.
    Sklar CA. Reproductive physiology and treatment related loss of sex hormone production. Med Pediatr Oncol. 1999;33:2–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Lushbaugh CC, Casarett GW. The effect of gonadal irradiation in clinical radiation therapy: a review. Cancer. 1976;37:1111–20.PubMedCrossRefGoogle Scholar
  168. 168.
    Thomas-Teinturier C, Allofji R, Svetlova E, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2014;30(6):1437–46.CrossRefGoogle Scholar
  169. 169.
    Akar B, Doger E, Cakiroglu Y, Corapcioglu F, Sarpar N, Caliskan E. The effects of childhood cancer therapy on ovarian reserve and pubertal development. Reproductive biomedicine online. Reproductive Healthcare Ltd; 2014. Received from
  170. 170.
    Brougham MF, Crofton PM, Johnson EJ, Evans N, Anderson RA, Wallace WH. Anti-Mullerian hormone is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective study. J Clin Endocrinol Metab. 2012;97:2059–67.PubMedCrossRefGoogle Scholar
  171. 171.
    Charpentier AM, Chong AL, Gingras-Hill G, et al. Anti-Mullerian hormone screening to assess ovarian reserve among female survivors of childhood cancer. J Cancer Surviv. 2014;8:548–54.PubMedCrossRefGoogle Scholar
  172. 172.
    Di Paola R, Constantini C, Tecchio C, et al. Anti-Mullerian hormone and antral follicle count reveal a late impairment of ovarian reserve in patients undergoing low gonadotoxic regimens for hematological malignancies. Oncologist. 2013;18:1307–14.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Van Dorp W, Blijdorp K, Laven J, Pieters R, Visser J, van der Lely A, Neggers S, van den Heuvel-Eibrink M. Decreased ovarian function is associated with obesity in very long-term female survivors of childhood cancer. Eur J Endocrinol. 2013;168:905–12.PubMedCrossRefGoogle Scholar
  174. 174.
    Dunlop C, Anderson R. Uses of anti-Mullerian hormone (AMH) measurements before and after cancer treatment in women. Maturitas. 2015;80:245–50.PubMedCrossRefGoogle Scholar
  175. 175.
    Rowley MJ, Leach DR, Warner GA, et al. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.PubMedCrossRefGoogle Scholar
  176. 176.
    Howell SJ, Shalet SM. Effect of cancer therapy on pituitary-testicular axis. Int J Androl. 2002;25:269–76.PubMedCrossRefGoogle Scholar
  177. 177.
    Kenney LB, Laufer MR, Grant FD, et al. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91:613–21.PubMedCrossRefGoogle Scholar
  178. 178.
    Wallace WH, Thompson AB. Preservation of fertility in children treated for cancer. Arch Dis Child. 2003;88:493–6.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Reinmuth S, Hohmann C, Rendtorff R, et al. Impact of chemotherapy and radiotherapy in childhood on fertility in adulthood: the FeCT-survey of childhood cancer survivors in Germany. J Cancer Res Clin Oncol. 2013;139:2071–8.PubMedCrossRefGoogle Scholar
  180. 180.
    Chow E, Stratton K, Leisenning W, et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970–1999: a report from the Childhood Cancer Survivor Study cohort. Lancet. 2016;17(5):567–76; [Ahead of Print].PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Loren A, Mangu P, Beck L, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;1(19):2500–11.CrossRefGoogle Scholar
  182. 182.
    Critchley HO. Factors of importance for implantation and problems after treatment for childhood cancer. Med Pediatr Oncol. 1999;33:9–14.PubMedCrossRefGoogle Scholar
  183. 183.
    Green DM, Kawashima T, Stovall M, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27:2677–85.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Green DM, Kawashima T, Stovall M, et al. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28:332–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Wasilewski-Masker K, Seidel K, Leisenring W, et al. Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J Cancer Surviv. 2014;8:437–47.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Green D, Liu W, Kutt W, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St. Jude Lifetime cohort study. Lancet Oncol. 2014;15:1215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Gunnes M, Lie R, Bjorge T, Ghaderi S, Ruud E, Syse A, Moster D. Reproduction and marriage among male survivors of cancer in childhood, adolescence, and young adulthood: a national cohort study. Br J Cancer. 2016;114:348–56.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Shetty G, Meistrich ML. Hormonal approaches to preservation and restoration of male fertility after cancer treatment. J Natl Cancer Inst Monogr. 2005;34:36–9.CrossRefGoogle Scholar
  189. 189.
    Blumenfeld Z, Everon A. Preserving fertility when choosing chemotherapy regiments-the role of gonadotropin-releasing hormone agonists. Expert Opin Pharmacother. 2015;16(7):1009–20.PubMedCrossRefGoogle Scholar
  190. 190.
    De Vos M, Smitz J, Woodruff TK. Fertility preservation in women with cancer. Lancet. 2014;384:1302–10.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Dursun P, Doğan NU, Ayhan A. Oncofertility for gynecologic and nongynecologic cancers: fertility sparing in young women of reproductive age. Crit Rev Oncol Hematol. 2014;92:258–67.PubMedCrossRefGoogle Scholar
  192. 192.
    Anderson R, Mitchell R, Kelsey T, Spears N, Telfer E, Wallace W. Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. Lancet. 2015;3(7):556–67.PubMedGoogle Scholar
  193. 193.
    Struijk R, Mulder C, van der Veen F, van Pelt A, Repping S. Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet? Hindawi Publishing Corporation BioMed Res Int. 2013;2013:903142.CrossRefGoogle Scholar
  194. 194.
    Rosendahl M, Andersen MT, Ralfkiær E, et al. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril. 2010;94:2186–90.PubMedCrossRefGoogle Scholar
  195. 195.
    Society for Assisted Reproductive Technology; American Society for Reproductive Medicine. Assisted reproductive technology in the United States: 2000 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril. 2004;81:207–1220.Google Scholar
  196. 196.
    Garcia A, Herrero M, Holzer H, Tulandi T, Chan P. Assisted reproductive outcomes of male cancer survivors. J Cancer Surviv. 2015;9:208–14.PubMedCrossRefGoogle Scholar
  197. 197.
    van Dijk EM, van Dulmen-den Broeder E, Kaspers GJ, et al. Psychosexual functioning of childhood cancer survivors. Psycho-Oncology. 2008;17:506–11.PubMedCrossRefGoogle Scholar
  198. 198.
    Gilleland Marchak J, Elchuri SV, Vangile K, Wasilewshi-Masker K, Mertens AC, Meacham LR. Perceptions of infertility risks among female pediatric cancer survivors following gonadotoxic therapy. J Pediatr Hematol Oncol. 2015;37(5):368–72.PubMedCrossRefGoogle Scholar
  199. 199.
    Quinn M, Letourneau J, Rosen M. Contraception after cancer treatment: describing methods, counseling, and unintended pregnancy risk. Contraception. 2014;89:466–71.PubMedCrossRefGoogle Scholar
  200. 200.
    Mukherjee A, Murray R, Columb B, et al. Acquired prolactin deficiency indicates severe hypopituitarism in patients with disease of the hypothalamic-pituitary axis. Clin Endocrinol. 2003;59:743–8.CrossRefGoogle Scholar
  201. 201.
    Follin C, Link K, Wiebet T, Moellt C, Bjorkt J, Erfurth E. Prolactin insufficiency but normal thyroid hormone levels after cranial radiotherapy in long-term survivors of childhood leukemia. Clin Endocrinol. 2013;79:71–8.CrossRefGoogle Scholar
  202. 202.
    Mukherjee A, Ryder WD, Jostel A, Shalet SM. Deficiency is independently associated with reduced insulin-like growth factor I status in severely growth hormone-deficient adults. J Clin Endocrinol Metab. 2006;91:2520–5.PubMedCrossRefGoogle Scholar
  203. 203.
    Follin C, Wiebe T, Moell C, Erfurthe M. Moderate dose cranial radiotherapy causes central adrenal insufficiency in long-term survivors of childhood leukaemia. Pituitary. 2015;17:7–12.CrossRefGoogle Scholar
  204. 204.
    Clement S, Schoot R, Slater O, et al. Endocrine disorders among long-term survivors of childhood head and neck rhabdomyosarcoma. Eur J Cancer. 2016;54:1–10.PubMedCrossRefGoogle Scholar
  205. 205.
    Gordign M, van Litsenburg RR, Gemke RJ, et al. Hypothalamic-pituitary-adrenal axis function in survivors of childhood acute lymphoblastic leukemia and healthy controls. Psychoneuroendocrinology. 2012;37(9):1448–56.CrossRefGoogle Scholar
  206. 206.
    Anmuth CJ, Ross BW, Alexander MA, et al. Chronic syndrome of inappropriate secretion of antidiuretic hormone in a pediatric patient after traumatic brain injury. Arch Phys Med Rehabil. 1993;74:1219–21.PubMedGoogle Scholar
  207. 207.
    Forrest JN, Cox M, Hong C, et al. Superiority of demeclocycline over lithium in the treatment of chronic syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med. 1978;298:173–7.PubMedCrossRefGoogle Scholar
  208. 208.
    Rianthavorn P, Cain J, Turman MA. Use of conivaptan to allow aggressive hydration to prevent tumor lysis syndrome in a pediatric patient with large-cell lymphoma and SIADH. Pediatr Nephrol. 2008;23:1367–70.PubMedCrossRefGoogle Scholar
  209. 209.
    Chan JM, Rimm EB, Colditz GA, et al. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.PubMedCrossRefGoogle Scholar
  210. 210.
    Colditz GA, Willett WC, Rotnitzky A, et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122:481–6.PubMedCrossRefGoogle Scholar
  211. 211.
    Vasan RS, Larson MG, Leip EP, et al. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet. 2001;358:1682–6.PubMedCrossRefGoogle Scholar
  212. 212.
    Gostynski M, Gutzwiller F, Kuulasmaa K, et al. Analysis of the relationship between total cholesterol, age, body mass index among males and females in the WHO MONICA Project. Int J Obes Relat Metab Disord. 2004;28:1082–90.PubMedCrossRefGoogle Scholar
  213. 213.
    Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss—an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.PubMedCrossRefGoogle Scholar
  214. 214.
    Rosengren A, Wedel H, Wilhelmsen L. Body weight and weight gain during adult life in men in relation to coronary heart disease and mortality. A prospective population study. Eur Heart J. 1999;20:269–77.PubMedCrossRefGoogle Scholar
  215. 215.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.CrossRefGoogle Scholar
  216. 216.
    Balkau B, Charles MA. European Group for the Study of Insulin Resistance (EGIR). Comment on the provisional report from the WHO consultation. Diabet Med. 1999;16:442–3.PubMedCrossRefGoogle Scholar
  217. 217.
    Zimmet PZ, Alberti KG, Shaw JE. Mainstreaming the metabolic syndrome: a definitive definition. Med J Aust. 2005;183:175–6.PubMedGoogle Scholar
  218. 218.
    Meacham LR, Chow EJ, Ness KK, et al. Cardiovascular risk factors in adult survivors of pediatric cancer—a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2010;19:170–18.CrossRefGoogle Scholar
  219. 219.
    Zhang F, Kelly M, Saltzman E, Must A, Roberts S, Parsons S. Obesity in pediatric ALL survivors: a meta-analysis. Pediatrics. 2014;133(3):e704–15.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Murphy A, White M, Elliot S, Lockwood L, Hallahan A, Davies P. Body composition of children with cancer during treatment and in survivorship. Am J Clin Nutr. 2015;102:891–6.PubMedCrossRefGoogle Scholar
  221. 221.
    Brown A, Lupo P, Danysh H, Okcu M, Scheurer M, Kamdar K. Prevalence and predictors of overweight and obesity among a multiethnic population of pediatric acute lymphoblastic leukemia survivors: a cross-sectional assessment. J Pediatr Hematol Oncol. 2016;00:1–7.Google Scholar
  222. 222.
    Harper R, Breene R, Gattens M, Williams R, Murray M. Non-irradiated female survivors of childhood acute lymphoblastic leukaemia are at risk of long-term increases in weight and body mass index. Br J Haematol. 2013;163:510–3.PubMedCrossRefGoogle Scholar
  223. 223.
    Nottage K, Ness K, Li C, Srivastava D, Robinson L, Hudson M. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia-from the St. Jude Lifetime Cohort Study. Br J Haematol. 2014;165(3):364–74.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Ruble K, Hayat M, Stewart K, Chen A. Body composition after bone marrow transplantation in childhood. Oncol Nurs Forum. 2012;39(2):186–92.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Hoffman A, Postma F, Sterkenburg A, Gebhardt U, Muller H. Eating behavior, weight problems, and eating disorders in 101 long-term survivors of childhood-onset craniopharyngioma. J Pediatr Endocrinol Metab. 2015;28(1–2):35–43.Google Scholar
  226. 226.
    Hansen J, Stancel H, Klesges L, et al. Eating behavior and BMI in adolescent survivors of brain tumor and acute lymphoblastic leukemia. J Pediatr Oncol Nurs. 2014;31(1):41–50.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Oeffinger KC, Mertens AC, Sklar CA, et al. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2003;21:1359–65.PubMedCrossRefGoogle Scholar
  228. 228.
    Zhang F, Roberts S, Parsons S, Must A, Kelly M, Wong W, Saltzman E. Low levels of energy expenditure in childhood cancer survivors: implications for obesity prevention. J Pediatr Hematol Oncol. 2015;37(3):232–6.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Wilson C, Gawande P, Ness K. Impairments that influence physical function among survivors of childhood cancer. Children (Basel). 2015;2(1):1–36.Google Scholar
  230. 230.
    Wilson C, Liu W, Yang J, Kang G, Ojha R, Neale G, Srivastava D, Gurney J, Hudson M, Robinson L, Ness K. Genetic and clinical factors associated with obesity among adult survivors of childhood cancer: a report from the St. Jude lifetime cohort. Cancer. 2015;121:2262–70.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Liu Q, Leisenring W, Ness K, Robison L, Armstrong G, Yasui Y, Bhatia S. Racial/ethnic differences in adverse outcomes among childhood cancer survivors: the childhood cancer survivor study. J Clin Oncol. 2016;34:1–10.Google Scholar
  232. 232.
    Bizzarri C, Pinto R, Ciccone S, Brescia L, Locatelli F, Cappa M. Early and progressive insulin resistance in young, non-obese cancer survivors treated with hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2015;62:1650–5.PubMedCrossRefGoogle Scholar
  233. 233.
    Chemaitilly W, Bouland F, Oeffinger KA, Sklar CA. Disorders of glucose homeostasis in young adults treated with total body irradiation during childhood: a pilot study. Bone Marrow Transplant. 2009;44:339–43.PubMedCrossRefGoogle Scholar
  234. 234.
    Trimis G, Moschovi M, Papassotiriou I, Chrousos G, Tzortzatou-Stathopoulou F. Early indicators of dysmetabolic syndrome in young survivors of acute lymphoblastic leukaemia in childhood as a target for preventing disease. J Pediatr Hematol Oncol. 2007;29:309–14.PubMedCrossRefGoogle Scholar
  235. 235.
    Abu-Ouf N, Jan M. Metabolic syndrome in the survivors of childhood acute lymphoblastic leukaemia. Obes Res Clin Pract. 2015;9:11–124.CrossRefGoogle Scholar
  236. 236.
    Felicetti F, D’Ascenzo F, Moretti C, et al. Prevalence of cardiovascular risk factors in long-term survivors of childhood cancer: 16 years follow up from a prospective registry. Eur J Prev Cardiol. 2015;22(6):762–70.PubMedCrossRefGoogle Scholar
  237. 237.
    Cohen L, Gordon J, Popovsky E, Duffey-Lind E, Lehmann L, Diller L. Late effects in children treated with intensive multimodal therapy for high-risk neuroblastoma: high incidence of endocrine and growth problems. Bone Marrow Transplant. 2014;49:502–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Wedrychowicz A, Ciechanowska M, Stelmach M, Starzyk J. Diabetes mellitus after allogenic hematopoietic stem cell transplantation. Horm Res Paediatr. 2013;79:44–50.PubMedCrossRefGoogle Scholar
  239. 239.
    Wei C, Thyagiarajan M, Hunt L, Shield J, Stevens M, Crowne E. Reduced insulin sensitivity in childhood survivors of haematopoietic stem cell transplantation is associated with lipodystropic and sarcopenic phenotypes. Pediatr Blood Cancer. 2015;62:1992–9.PubMedCrossRefGoogle Scholar
  240. 240.
    Taskinen M, Ulla M, Saarinen-Pihkala UM, Hovi L, Lipsanen-Nyman M. Impaired glucose tolerance and dyslipidaemia as late effects after bone-marrow transplantation in childhood. Lancet. 2000;356:993–7.PubMedCrossRefGoogle Scholar
  241. 241.
    Lustig RH. The neuroendocrinology of childhood obesity. Pediatr Clin N Am. 2001;48:909–30.CrossRefGoogle Scholar
  242. 242.
    Karaman S, Ercan O, Yildiz I, Bolayirli M, Celkan T, Apak H, et al. Late effects of childhood ALL treatment on body mass index and serum leptin levels. J Pediatr Endocrinol Metab. 2010;23(7):669–74.PubMedCrossRefGoogle Scholar
  243. 243.
    Skoczen S, Tomasik PJ, Bik-Multanowski M, Surmiak M, Balwierz W, Pietrzyk JJ, et al. Plasma levels of leptin and soluble leptin receptor and polymorphisms of leptin gene-18G9 A and leptin receptor genes K109R and Q223R, in survivors of childhood acute lymphoblastic leukemia. J Exp Clin Cancer Res. 2011;30:64.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Ahmet A, Blaser S, Stephens D, Guger S, Rutkas JT, et al. Weight gain in craniopharyngioma–a model for hypothalamic obesity. J Pediatr Endocrinol Metab. 2006;19:121–7.PubMedCrossRefGoogle Scholar
  245. 245.
    Lek N, Prentice P, Williams RM, Ong KK, Burke GA, et al. Risk factors for obesity in childhood survivors of suprasellar brain tumours: a retrospective study. Acta Paediatr. 2010;99:1522–6.PubMedCrossRefGoogle Scholar
  246. 246.
    Müller HL, Bueb K, Bartels U, Roth C, Harz K, et al. Obesity after childhood craniopharyngioma–German multicenter study on pre-operative risk factors and quality of life. Klin Padiatr. 2001;213:244–9.PubMedCrossRefGoogle Scholar
  247. 247.
    Müller HL, Emser A, Faldum A, Bruhnken G, Etavard-Gorris N, et al. Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J Clin Endocrinol Metab. 2004;89:3298–305.PubMedCrossRefGoogle Scholar
  248. 248.
    Sterkenburg A, Hoffman A, Gebhardt U, Warmuth-Metz M, Daubenbuchel A, Muller H. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro-Oncology. 2015;17(70):1029–38.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Mason PW, Krawiecki N, Meacham LR. The use of dextroamphetamine to treat obesity and hyperphagia in children treated for craniopharyngioma. Arch Pediatr Adolesc Med. 2002;156:887–92.PubMedCrossRefGoogle Scholar
  250. 250.
    Ismail D, O’Connell MA, Zacharin MR. Dexamphetamine use for management of obesity and hypersomnolence following hypothalamic injury. J Pediatr Endocrinol Metab. 2006;19:129–34.PubMedCrossRefGoogle Scholar
  251. 251.
    Greenway FL, Bray GA. Treatment of hypothalamic obesity with caffeine and ephedrine. Endocr Pract. 2008;14:697–703.PubMedCrossRefGoogle Scholar
  252. 252.
    Karlage R, Wilson C, Zhang N, et al. Validity of anthropometric measurements for characterizing obesity among adult survivors of childhood caner: a report from the St. Jude Lifetime Cohort Study. Cancer. 2015;121:2036–43.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Bogg T, Shaw P, Cohn R, et al. Physical activity and screen-time in childhood haematopoietic stem cell transplant survivors. Acta Paediatr. 2015;104(10):e455-9. Epub 2015 Sep 2.PubMedCrossRefGoogle Scholar
  254. 254.
    Jones KL, Arslanian S, Peterokova VA, et al. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2002;25:89–94.PubMedCrossRefGoogle Scholar
  255. 255.
    Den Hoed M, Klap B, de Winkel M, et al. Bone mineral density after childhood cancer in 346 long-term adult survivors of childhood cancer. Osteoporos Int. 2015;26:521–9.CrossRefGoogle Scholar
  256. 256.
    Gurney J, Kaste S, Li W, et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2014;61:1270–6.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Vitanza N, Hogan L, Zhang G, Parker R. The progression of bone mineral density abnormalities after chemotherapy for childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2015;37:356–61.PubMedCrossRefGoogle Scholar
  258. 258.
    Han J, Kim H, Hahn S, et al. Poor bone health at the end of puberty in childhood cancer survivors. Pediatr Blood Cancer. 2015;62:1838–43.PubMedCrossRefGoogle Scholar
  259. 259.
    Kang M, Lim J. Bone mineral density deficits in childhood cancer survivors: pathophysiology, prevalence, screening, and management. Korean J Pediatr. 2013;56(2):60–7.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Choi Y, Park S, Cho W, et al. Factors related to decreased bone mineral density in childhood cancer survivors. J Korean Med Sci. 2013;28:1632–8.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Muszynska-Roslan K, Latoch E, Konstantynowicz J, Panasiuk A, Stewart A, Krawczuk-Rybak M. Bone mineral density in pediatric survivors of Hodgkin and non-Hodgkin lymphomas. Adv Med Sci. 2014;59:200–5.PubMedCrossRefGoogle Scholar
  262. 262.
    Hartman A, van den Bos C, Stijnen T, et al. Decrease in peripheral muscle strength and ankle dorsiflexion as long-term side effects of treatment for childhood cancer. Pediatr Blood Cancer. 2007;50:833–837SA.CrossRefGoogle Scholar
  263. 263.
    Gnudi S, Butturini L, Ripamonti C, et al. The effects of methotrexate (mtx) on bone. A densitometric study conducted on 59 patients with mtx administered at different doses. Ital J Orthop Traumatol. 1988;14(2):227–31.PubMedGoogle Scholar
  264. 264.
    Alikasifoglu A, Yetgin S, Cetin M, et al. Bone mineral density and serum bone turnover markers in survivors of childhood acute lymphoblastic leukemia: comparison of megadose methylprednisolone and conventional-dose prednisolone treatments. Am J Hematol. 2005;80:113–8.PubMedCrossRefGoogle Scholar
  265. 265.
    Lim J, Kim D, Lee J, et al. Young age at diagnosis, male sex, decreased lean mass are risk factors of osteoporosis in long-term survivors of osteosarcoma. J Pediatr Hematol Oncol. 2013;35:54–60.PubMedCrossRefGoogle Scholar
  266. 266.
    Neville K, Walker J, Cohn R, Cowell C, White C. The prevalence of vitamin D deficiency is higher in adult survivors of childhood cancer. Clin Endocrinol. 2015;82:657–62.CrossRefGoogle Scholar
  267. 267.
    Schundeln M, Hauffa P, Bauer J, et al. Pediatric survivors of retinoblastoma are at risk for altered bone metabolism after chemotherapy treatment early in life. Pediatr Hematol Oncol. 2015;32:455–66.PubMedCrossRefGoogle Scholar
  268. 268.
    Halton J, Gaboury I, Grant R, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: result of the Canadian steroid-associated osteoporosis in the pediatric population (STOPP) research program. J Bone Miner Res. 2009;24:1326–33.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Makitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies L-R, Jahnukainen K. Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. Eur J Endocrinol. 2013;168:281–8.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Arikoski P, Komulainen J, Riikonen P, et al. Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab. 1999;84:3174–81.PubMedCrossRefGoogle Scholar
  271. 271.
    Hogler W, Wehl G, van Staa T, et al. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the General Practice Research Database. Pediatr Blood Cancer. 2007;48:21–7.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Mostoufi-Moab S, Brodsky J, Isaacoff E, et al. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. Clin Endocrinol Metab. 2012;97(10):3584–92.CrossRefGoogle Scholar
  273. 273.
    Mattano LA, Sather HN, Trigg ME, et al. Osteonecrosis as complication of treating acute lymphoblastic leukaemia in children: a report from the children’s cancer group. J Clin Oncol. 2000;18:3262–72.PubMedCrossRefGoogle Scholar
  274. 274.
    Lackner H, Benesch M, Moser A, et al. Aseptic osteonecrosis in children and adolescents treated for hemato-oncological diseases: a 13-year longitudinal observational study. J Pediatr Hematol Oncol. 2005;27:259–63.PubMedCrossRefGoogle Scholar
  275. 275.
    Sala A, Mattano LA, Barr RD. Osteonecrosis in children and adolescents with cancer—an adverse effect of systemic therapy. Eur J Cancer. 2007;43:683–9.PubMedCrossRefGoogle Scholar
  276. 276.
    Patel B, Richards SM, Rowe JM, et al. High incidence of avascular necrosis in adolescents with acute lymphoblastic leukaemia: a UKALL XII analysis. Leukemia. 2008;22:308–12.PubMedCrossRefGoogle Scholar
  277. 277.
    Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin N Am. 2002;49:143–73.CrossRefGoogle Scholar
  278. 278.
    Karimova EJ, Kaste SC. MR imaging of osteonecrosis of the knee in children with acute lymphocytic leukemia. Pediatr Radiol. 2007;37:1140–6.PubMedCrossRefGoogle Scholar
  279. 279.
    Gordon CM, Bachrach LK, Carpenter TO, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11:43–58.PubMedCrossRefGoogle Scholar
  280. 280.
    Coleman R, Body J, Aapro M, Hadji P, Herrstedt J. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25(Supplement 3):iii124–37.PubMedCrossRefGoogle Scholar
  281. 281.
    Almstedt H, Tarleton H. Mind the gaps: missed opportunities to promote bone health among cancer survivors. Support Care Cancer. 2015;23:611–4.PubMedCrossRefGoogle Scholar
  282. 282.
    Mogil R, Kaste S, Ferry R, et al. Effect of low-magnitude, high-frequency mechanical stimulation on BMD among young childhood cancer survivors: a randomized clinical trial. JAMA Oncol. 2016;2(7):908–14. [Ahead of Print].PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Nguyen T, Zacharin M. Pamidronate treatment of steroid associated osteonecrosis in young patients treated for acute lymphoblastic leukaemia—two-year outcomes. J Pediatr Endocrinol Metab. 2006;19:161–7.PubMedCrossRefGoogle Scholar
  284. 284.
    Lethaby C, Wiernikowski J, Sala A, et al. Bisphosphonate therapy for reduced bone mineral density during treatment of acute lymphoblastic leukaemia in childhood and adolescence: a report of preliminary experience. J Pediatr Hematol Oncol. 2007;29:613–6.PubMedCrossRefGoogle Scholar
  285. 285.
    Wiernikowski JT, Barr RD, Webber C, et al. Alendronate for steroid-induced osteopenia in children with acute lymphoblastic leukaemia or non-Hodgkin’s lymphoma: results of a pilot study. J Oncol Pharm Pract. 2005;11:51–6.PubMedCrossRefGoogle Scholar
  286. 286.
    Suh E, Daughtery C, Wroblewski K, et al. General internists’ preferences and knowledge about the care of adult survivors of childhood cancer: a cross-sectional survey. Ann Intern Med. 2014;160(1):11–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Megan Oberle
    • 1
  • Jill L. Brodsky
    • 2
  • Adda Grimberg
    • 3
    • 4
  1. 1.Endocrine – PediatricsUniversity of MinnesotaMinneapolisUSA
  2. 2.Pediatric EndocrinologyCareMount Medical GroupPoughkeepsieUSA
  3. 3.Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Diagnostic and Research Growth Center, Division of Endocrinology and DiabetesThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations