Skip to main content

Advertisement

Log in

Bone mineral density after childhood cancer in 346 long-term adult survivors of childhood cancer

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

More than 45 % of long-term childhood cancer survivors (CCS) were diagnosed with osteopenia. Our data suggest that greater awareness for osteopenia is warranted in long-term CCS, especially in survivors who are older than 30 years, male, and underweight and were treated with cranial-spinal radiotherapy and/or steroids.

Introduction

Osteopenia is a potential complication of childhood cancer treatment, but the magnitude of this problem in survivors is unknown. We examined (determinants of) bone mineral density (BMD) status in long-term survivors of adult childhood cancer.

Methods

This retrospective single-centre cohort study included 346 subjects with the most common types of childhood cancer. Subjects had a median age at diagnosis of 7.0 years (range 0.1–16.8 years), a median age at follow-up of 24.5 years (range 18.0–47.6 years) and a median follow-up time of 16.7 years (range 5.6–39.9 years). Total body BMD (BMDTB) and BMD of the lumbar spine (BMDLS) were measured by dual X-ray absorptiometry. Osteopenia was defined as BMD standardized deviation score (SDS) below −1.

Results

Survivors had a lower BMDTB and BMDLS (mean SDS −0.55; p < 0.001 and −0.30; p < 0.001, respectively) as compared to healthy peers. Osteopenia (BMDTB and/or BMDLS) was present in 45 % of the survivors. Multivariate logistic regression analyses identified age at diagnosis <12 years, age >30 years at follow-up, male gender, underweight at follow-up and treatment with cranial-spinal radiotherapy or prednisone as independent prognostic factors for osteopenia.

Conclusions

This large cohort of childhood cancer survivors identified osteopenia in 45 % of CCS. This indicates that greater awareness is warranted, especially in survivors who are older than 30 years, male, have underweight and were treated with cranial-spinal radiotherapy and/or steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J, Dimitrova N, Jakab Z, Kaatsch P, Lacour B, Mallone s, Marcos-Gragera R, Minicozzi P, Sanchez-Perez MJ, Sant M, Santaquilani M, Stiller C, Tavilla A, Trama A, Peris-Bonet R, Group EW (2014) Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5—a population-based study. Lancet Oncol 15(1):35–47. doi:10.1016/S1470-2045(13)70548-5

    Article  PubMed  Google Scholar 

  2. Chemaitilly W, Sklar CA (2010) Endocrine complications in long-term survivors of childhood cancers. Endocr Relat Cancer 17(20453080):141–159

    Article  Google Scholar 

  3. Lie Fong S, Lugtenburg PJ, Schipper I, Themmen APN, de Jong FH, Sonneveld P, Laven JSE (2008) Anti-mullerian hormone as a marker of ovarian function in women after chemotherapy and radiotherapy for haematological malignancies. Hum Reprod 23(18216040):674–678

    Article  CAS  PubMed  Google Scholar 

  4. van Beek RD, van den Heuvel-Eibrink MM, Hakvoort-Cammel FG, van den Bos C, van der Pal HJ, Krenning EP, de Rijke YB, Pieters R, de Muinck Keizer-Schrama SM (2009) Bone mineral density, growth, and thyroid function in long-term survivors of pediatric Hodgkin’s lymphoma treated with chemotherapy only. J Clin Endocrinol Metab 94(6):1904–1909. doi:10.1210/jc.2008-0622

    Article  PubMed  Google Scholar 

  5. van Beek RD, van den Heuvel-Eibrink MM, Laven JS, de Jong FH, Themmen AP, Hakvoort-Cammel FG, van den Bos C, van den Berg H, Pieters R, de Muinck Keizer-Schrama SM (2007) Anti-Mullerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin’s lymphoma during childhood. J Clin Endocrinol Metab 92(10):3869–3874. doi:10.1210/jc.2006-2374

    Article  PubMed  Google Scholar 

  6. van Casteren NJ, van der Linden GH, Hakvoort-Cammel FG, Hahlen K, Dohle GR, van den Heuvel-Eibrink MM (2009) Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer 52(1):108–112. doi:10.1002/pbc.21780

    Article  PubMed  Google Scholar 

  7. van Waas M, Neggers SJCMM, Pieters R, van den Heuvel-Eibrink MM (2010) Components of the metabolic syndrome in 500 adult long-term survivors of childhood cancer. Ann Oncol 21(19850641):1121–1126

    Article  PubMed  Google Scholar 

  8. Karaman S, Ercan O, Yildiz I, Bolayirli M, Celkan T, Apak H, Ozkan A, Onal H, Canbolat A (2010) Late effects of childhood ALL treatment on body mass index and serum leptin levels. J Pediatr Endocrinol Metab 23(20857839):669–674

    CAS  PubMed  Google Scholar 

  9. te Winkel ML, Pieters R, Hop WC, Roos JC, Bokkerink JP, Leeuw JA, Bruin MC, Kollen WJ, Veerman AJ, de Groot-Kruseman HA, van der Sluis IM, van den Heuvel-Eibrink MM (2014) Bone mineral density at diagnosis determines fracture rate in children with acute lymphoblastic leukemia treated according to the DCOG-ALL9 protocol. Bone 59:223–228. doi:10.1016/j.bone.2013.11.017

    Article  Google Scholar 

  10. Wilson CL, Ness KK (2013) Bone mineral density deficits and fractures in survivors of childhood cancer. Curr Osteoporos Rep 11(4):329–337. doi:10.1007/s11914-013-0165-0

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ruble K, Hayat MJ, Stewart KJ, Chen AR (2010) Bone mineral density after bone marrow transplantation in childhood: measurement and associations. Biol Blood Marrow Transplant 16(10):1451–1457. doi:10.1016/j.bbmt.2010.04.010

    Article  PubMed Central  PubMed  Google Scholar 

  12. Le Meignen M, Auquier P, Barlogis V, Sirvent N, Contet A, Simeoni MC, Galambrun C, Poiree M, Chastagner P, Play B, Villes V, Berbis J, Chambost H, Bordigoni P, Michel G (2011) Bone mineral density in adult survivors of childhood acute leukemia: impact of hematopoietic stem cell transplantation and other treatment modalities. Blood 118(6):1481–1489. doi:10.1182/blood-2011-01-332866

    Article  PubMed  Google Scholar 

  13. Choi YJ, Park SY, Cho WK, Lee JW, Cho KS, Park SH, Hahn SH, Jung MH, Chung NG, Cho B, Suh BK, Kim HK (2013) Factors related to decreased bone mineral density in childhood cancer survivors. J Korean Med Sci 28(11):1632–1638. doi:10.3346/jkms.2013.28.11.1632

    Article  PubMed Central  PubMed  Google Scholar 

  14. Benmiloud S, Steffens M, Beauloye V, de Wandeleer A, Devogelaer J-P, Brichard B, Vermylen C, Maiter D (2010) Long-term effects on bone mineral density of different therapeutic schemes for acute lymphoblastic leukemia or non-Hodgkin lymphoma during childhood. Horm Res Paediatr 74(20395671):241–250

    Article  CAS  PubMed  Google Scholar 

  15. Mandel K, Atkinson S, Barr RD, Pencharz P (2004) Skeletal morbidity in childhood acute lymphoblastic leukemia. J Clin Oncol 22(15051768):1215–1221

    Article  PubMed  Google Scholar 

  16. Kaste SC, Jones-Wallace D, Rose SR, Boyett JM, Lustig RH, Rivera GK, Pui CH, Hudson MM (2001) Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: frequency of occurrence and risk factors for their development. Leukemia 15(5):728–734

    Article  CAS  PubMed  Google Scholar 

  17. Gurney JG, Kaste SC, Liu W, Srivastava DK, Chemaitilly W, Ness KK, Lanctot JQ, Ojha RP, Nottage KA, Wilson CL, Li Z, Robison LL, Hudson MM (2014) Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. doi:10.1002/pbc.25010

    Google Scholar 

  18. Makitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies LR, Jahnukainen K (2013) Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. Eur J Endocrinol 168(2):281–288. doi:10.1530/eje-12-0702

    Article  CAS  PubMed  Google Scholar 

  19. Lim JS, Kim DH, Lee JA, Cho J, Cho WH, Lee SY, Jeon DG (2013) Young age at diagnosis, male sex, and decreased lean mass are risk factors of osteoporosis in long-term survivors of osteosarcoma. J Pediatr Hematol Oncol 35(1):54–60. doi:10.1097/MPH.0b013e318275193b

    Article  PubMed  Google Scholar 

  20. Joyce ED, Nolan VG, Ness KK, Ferry RJ Jr, Robison LL, Pui CH, Hudson MM, Kaste SC (2011) Association of muscle strength and bone mineral density in adult survivors of childhood acute lymphoblastic leukemia. Arch Phys Med Rehabil 92(6):873–879. doi:10.1016/j.apmr.2010.12.039

    Article  PubMed Central  PubMed  Google Scholar 

  21. Polgreen LE, Petryk A, Dietz AC, Sinaiko AR, Leisenring W, Goodman P, Steffen LM, Perkins JL, Dengel DR, Baker KS, Steinberger J (2012) Modifiable risk factors associated with bone deficits in childhood cancer survivors. BMC Pediatr 12:40. doi:10.1186/1471-2431-12-40

    Article  PubMed Central  PubMed  Google Scholar 

  22. Assembly WMAG (2008) The Declaration of Helsinki—Sixth Revision. Helsinki, Finland

  23. de Vet A, Laven JSE, de Jong FH, Themmen APN, Fauser BCJM (2002) Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril 77(11821097):357–362

    Article  PubMed  Google Scholar 

  24. Crabtree NJ, Shaw NJ, Boivin CM, Oldroyd B, Truscott JG (2005) Pediatric in vivo cross-calibration between the GE Lunar Prodigy and DPX-L bone densitometers. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 16(12):2157–2167. doi:10.1007/s00198-005-2021-2

    Article  Google Scholar 

  25. Oldroyd B, Smith AH, Truscott JG (2003) Cross-calibration of GE/Lunar pencil and fan-beam dual energy densitometers—bone mineral density and body composition studies. Eur J Clin Nutr 57(8):977–987. doi:10.1038/sj.ejcn.1601633

    Article  CAS  PubMed  Google Scholar 

  26. Boot AM, de Ridder MAJ, van der Sluis IM, van Slobbe I, Krenning EP, Keizer-Schrama SMPFM (2010) Peak bone mineral density, lean body mass and fractures. Bone 46(19833245):336–341

    Article  PubMed  Google Scholar 

  27. Lewiecki EM, Gordon CM, Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Silverman S, Bishop NJ, Leonard MB, Bianchi ML, Kalkwarf HJ, Langman CB, Plotkin H, Rauch F, Zemel BS (2008) Special report on the 2007 adult and pediatric Position Development Conferences of the International Society for Clinical Densitometry. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 19(10):1369–1378. doi:10.1007/s00198-008-0689-9

    Article  CAS  Google Scholar 

  28. Nysom K, Holm K, Michaelsen KF, Hertz H, Muller J, Molgaard C (2001) Bone mass after treatment of malignant lymphoma in childhood. Med Pediatr Oncol 37(6):518–524

    Article  CAS  PubMed  Google Scholar 

  29. Holzer G, Krepler P, Koschat MA, Grampp S, Dominkus M, Kotz R (2003) Bone mineral density in long-term survivors of highly malignant osteosarcoma. J Bone Joint Surg (Br) 85(12678358):231–237

    Article  CAS  Google Scholar 

  30. Kaste SC, Ahn H, Liu T, Liu W, Krasin MJ, Hudson MM, Spunt SL (2008) Bone mineral density deficits in pediatric patients treated for sarcoma. Pediatr Blood Cancer 50(5):1032–1038. doi:10.1002/pbc.21281

    Article  PubMed  Google Scholar 

  31. Kang MJ, Kim SM, Lee YA, Shin CH, Yang SW, Lim JS (2012) Risk factors for osteoporosis in long-term survivors of intracranial germ cell tumors. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 23(7):1921–1929. doi:10.1007/s00198-011-1821-9

    Article  CAS  Google Scholar 

  32. Nysom K, Holm K, Michaelsen KF, Hertz H, Jacobsen N, Muller J, Molgaard C (2000) Bone mass after allogeneic BMT for childhood leukaemia or lymphoma. Bone Marrow Transplant 25(2):191–196. doi:10.1038/sj.bmt.1702131

    Article  CAS  PubMed  Google Scholar 

  33. Ho PT, Zimmerman K, Wexler LH, Blaney S, Jarosinski P, Weaver-McClure L, Izraeli S, Balis FM (1995) A prospective evaluation of ifosfamide-related nephrotoxicity in children and young adults. Cancer 76(12):2557–2564

    Article  CAS  PubMed  Google Scholar 

  34. Muller HL, Schneider P, Bueb K, Etavard-Gorris N, Gebhardt U, Kolb R, Sorensen N (2003) Volumetric bone mineral density in patients with childhood craniopharyngioma. Exp Clin Endocrinol Diabetes 111(3):168–173. doi:10.1055/s-2003-39789

    Article  CAS  PubMed  Google Scholar 

  35. Watsky MA, Carbone LD, An Q, Cheng C, Lovorn EA, Hudson MM, Pui CH, Kaste SC (2014) Bone turnover in long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. doi:10.1002/pbc.25025

    PubMed  Google Scholar 

  36. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936. doi:10.1016/S0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  37. Kaste SC, Rai SN, Fleming K, McCammon EA, Tylavsky FA, Danish RK, Rose SR, Sitter CD, Pui C-H, Hudson MM (2006) Changes in bone mineral density in survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 46(16106430):77–87

    Article  PubMed  Google Scholar 

  38. Bours SP, van Geel TA, Geusens PP, Janssen MJ, Janzing HM, Hoffland GA, Willems PC, van den Bergh JP (2011) Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J Clin Endocrinol Metab 96(5):1360–1367. doi:10.1210/jc.2010-2135

    Article  CAS  PubMed  Google Scholar 

  39. Frank GR (2003) Role of estrogen and androgen in pubertal skeletal physiology. Med Pediatr Oncol 41(3):217–221. doi:10.1002/mpo.10340

    Article  PubMed  Google Scholar 

  40. Sala A, Talsma D, Webber C, Posgate S, Atkinson S, Barr R (2007) Bone mineral status after treatment of malignant lymphoma in childhood and adolescence. Eur J Cancer Care 16(4):373–379. doi:10.1111/j.1365-2354.2006.00757.x

    Article  CAS  Google Scholar 

  41. van Leeuwen BL, Kamps WA, Jansen HW, Hoekstra HJ (2000) The effect of chemotherapy on the growing skeleton. Cancer Treat Rev 26(5):363–376. doi:10.1053/ctrv.2000.0180

    Article  PubMed  Google Scholar 

  42. Ferrari S, Bianchi ML, Eisman JA, Foldes AJ, Adami S, Wahl DA, Stepan JJ, de Vernejoul MC, Kaufman JM, Pathophysiology IOFCoSAWGoO (2012) Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 23(12):2735–2748. doi:10.1007/s00198-012-2030-x

    Article  CAS  Google Scholar 

  43. Suh E, Daugherty CK, Wroblewski K, Lee H, Kigin ML, Rasinski KA, Ford JS, Tonorezos ES, Nathan PC, Oeffinger KC, Henderson TO (2014) General internists’ preferences and knowledge about the care of adult survivors of childhood cancer: a cross-sectional survey. Ann Intern Med 160(1):11–17

    Article  PubMed  Google Scholar 

  44. Children’s Oncology Group COG (2014) Version 3.0 of long-term follow-up guidelines http://www.survivorshipguidelines.org/. Accessed 5 Jun 2014

  45. Stichting Kinderoncologie Nederland SKION (2010) Richtlijn follow-up na kinderkanker. https://www.skion.nl/voor-patienten-en-ouders/late-effecten/533/richtlijn-follow-up-na-kinderkanker/. Accessed 5 Jun 2014

  46. SIGN (2014) SIGN 132: Long term follow up of survivors of childhood cancer. http://www.sign.ac.uk/guidelines/fulltext/132/index.html. Accessed 5 Jun 2014

Download references

Acknowledgments

MvW, MtW and SN were supported by grants from the Foundation Kinderenkankervrij (KIKA) and WvD is supported by the Paediatric Oncology Centre Society for Research (KOCR), Rotterdam, The Netherlands.

Ethical standards

This study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to their inclusion in the study.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. van den Heuvel-Eibrink.

Additional information

M.A.H. den Hoed and B.C. Klap shared first authorship and S.M.F. Pluijm and M.M. van den Heuvel-Eibrink shared last authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental table 1

Body height and bone mineral density in 346 adult long term childhood cancer survivors (DOCX 37 kb)

Supplemental table 2

Bone mineral density adjusted for height SDS in 298 adult long term childhood cancer survivors (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

den Hoed, M.A.H., Klap, B.C., te Winkel, M.L. et al. Bone mineral density after childhood cancer in 346 long-term adult survivors of childhood cancer. Osteoporos Int 26, 521–529 (2015). https://doi.org/10.1007/s00198-014-2878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2878-z

Keywords

Navigation