Advertisement

Diaphragm Dysfunction during Weaning from Mechanical Ventilation: An Underestimated Phenomenon with Clinical Implications

  • M. DresEmail author
  • A. Demoule
Part of the Annual Update in Intensive Care and Emergency Medicine book series (AUICEM)

Introduction

Weaning failure is defined as the inability to liberate a patient from the ventilator. Therefore, the term ‘weaning failure’ encompasses the failure of a spontaneous breathing trial (SBT) or the need to resume mechanical ventilation after extubation within 48 h to seven days [1]. The majority of patients are safely weaned from the ventilator after a first attempt, some are even extubated without any SBT [2]. Thereby, weaning failure occurs in a minority of patients but represents an important burden in term of days of mechanical ventilation, intensive care unit (ICU) lengths of stay and morbi‐mortality [2]. Investigating the causes of weaning failure is therefore crucial because the duration of mechanical ventilation for those who fail the SBT [2] and the reintubation for those in whom reintubation is needed [3, 4] have both been associated with poor outcomes. Ultimately, identifying the reason why a patient fails the weaning process might help to reduce the duration...

References

  1. 1.
    Thille AW, Cortés-Puch I, Esteban A (2013) Weaning from the ventilator and extubation in ICU. Curr Opin Crit Care 19:57–64CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Béduneau G, Pham T, Schortgen F et al (2017) Epidemiology of weaning outcome according to a new definition. The WIND study. Am J Respir Crit Care Med 195:772–783CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Epstein SK, Ciubotaru RL, Wong JB (1997) Effect of failed extubation on the outcome of mechanical ventilation. Chest 112:186–192CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Thille AW, Harrois A, Schortgen F et al (2011) Outcomes of extubation failure in medical intensive care unit patients. Crit Care Med 39:2612–2618CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jung B, Moury PH, Mahul M et al (2016) Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med 42:853–861CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dres M, Dubé BP, Mayaux J et al (2017) Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med 195:57–66CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dubé BP, Dres M, Mayaux J, Demiri S, Similowski T, Demoule A (2017) Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax 72:811–818CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim WY, Suh HJ, Hong SB et al (2011) Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med 39:2627–2630CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Berger D, Bloechlinger S, von Haehling S et al (2016) Dysfunction of respiratory muscles in critically ill patients on the intensive care unit. J Cachexia Sarcopenia Muscle 7:403–412CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341CrossRefPubMedGoogle Scholar
  11. 11.
    Levine S, Nguyen T, Taylor N et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedGoogle Scholar
  12. 12.
    Welvaart WN, Paul MA, Stienen GJM et al (2011) Selective diaphragm muscle weakness after contractile inactivity during thoracic surgery. Ann Surg 254:1044–1049CrossRefPubMedGoogle Scholar
  13. 13.
    American Thoracic Society, European Respiratory Society (2002) ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med 166:518–624CrossRefGoogle Scholar
  14. 14.
    Moxham J, Goldstone J (1994) Assessment of respiratory muscle strength in the intensive care unit. Eur Respir J 7:2057–2061PubMedGoogle Scholar
  15. 15.
    Watson AC, Hughes PD, Harris LM et al (2001) Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med 29:1325–1331CrossRefPubMedGoogle Scholar
  16. 16.
    Vivier E, Mekontso Dessap A, Dimassi S et al (2012) Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med 38:796–803CrossRefPubMedGoogle Scholar
  17. 17.
    Lerolle N, Guérot E, Dimassi S et al (2009) Ultrasonographic diagnostic criterion for severe diaphragmatic dysfunction after cardiac surgery. Chest 135:401–407CrossRefPubMedGoogle Scholar
  18. 18.
    Dres M, Schmidt M, Ferre A et al (2012) Diaphragm electromyographic activity as a predictor of weaning failure. Intensive Care Med 38:2017–2025CrossRefPubMedGoogle Scholar
  19. 19.
    Rozé H, Repusseau B, Perrier V et al (2013) Neuro-ventilatory efficiency during weaning from mechanical ventilation using neurally adjusted ventilatory assist. Br J Anaesth 111:955–960CrossRefPubMedGoogle Scholar
  20. 20.
    Jung B, Nougaret S, Conseil M et al (2014) Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography. Anesthesiology 120:1182–1191CrossRefPubMedGoogle Scholar
  21. 21.
    Demoule A, Jung B, Prodanovic H et al (2013) Diaphragm dysfunction on admission to icu: prevalence, risk factors and prognostic impact – a prospective study. Am J Respir Crit Care Med 188:213–219CrossRefPubMedGoogle Scholar
  22. 22.
    Aubier M, Trippenbach T, Roussos C (1981) Respiratory muscle fatigue during cardiogenic shock. J Appl Physiol 51:499–508CrossRefPubMedGoogle Scholar
  23. 23.
    Jaber S, Petrof BJ, Jung B et al (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371CrossRefPubMedGoogle Scholar
  24. 24.
    Hermans G, Agten A, Testelmans D et al (2010) Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care 14:R127CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Grosu HB, Lee YI, Lee J et al (2012) Diaphragm muscle thinning in patients who are mechanically ventilated. Chest 142:1455–1460CrossRefPubMedGoogle Scholar
  26. 26.
    Goligher EC, Fan E, Herridge MS et al (2015) Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med 192:1080–1088CrossRefPubMedGoogle Scholar
  27. 27.
    Zambon M, Beccaria P, Matsuno J et al (2016) Mechanical ventilation and diaphragmatic atrophy in critically ill patients: an ultrasound study. Crit Care Med 44:1347–1352CrossRefPubMedGoogle Scholar
  28. 28.
    Goligher EC, Dres M, Fan E et al (2017) Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201703-0536OC (Sep 20 Epub ahead of print)CrossRefPubMedGoogle Scholar
  29. 29.
    Garnacho-Montero J, Amaya-Villar R, García-Garmendía JL et al (2005) Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med 33:349–354CrossRefPubMedGoogle Scholar
  30. 30.
    De Jonghe B, Bastuji-Garin S, Durand MC et al (2007) Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med 35:2007–2015CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mrozek S, Jung B, Petrof BJ et al (2012) Rapid onset of specific diaphragm weakness in a healthy murine model of ventilator-induced diaphragmatic dysfunction. Anesthesiology 117:560–567CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Blumhof S, Wheeler D, Thomas K et al (2016) Change in diaphragmatic thickness during the respiratory cycle predicts extubation success at various levels of pressure support ventilation. Lung 194:519–525CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ferrari G, De Filippi G, Elia F, Panero F, Volpicelli G, Aprà F (2014) Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J 6:8CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    DiNino E, Gartman EJ, Sethi JM, McCool FD (2014) Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 69:423–427CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Farghaly S, Hasan AA (2017) Diaphragm ultrasound as a new method to predict extubation outcome in mechanically ventilated patients. Aust Crit Care 30:37–43CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sassoon CSH, Zhu E, Caiozzo VJ (2004) Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 170:626–632CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gayan-Ramirez G, Testelmans D, Maes K et al (2005) Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects. Crit Care Med 33:2804–2809CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Reynolds SC, Meyyappan R, Thakkar V et al (2017) Mitigation of ventilator-induced diaphragm atrophy by transvenous phrenic nerve stimulation. Am J Respir Crit Care Med 195:339–348PubMedPubMedCentralGoogle Scholar
  39. 39.
    Dres M, Teboul JL, Monnet X (2014) Weaning the cardiac patient from mechanical ventilation. Curr Opin Crit Care 20:493–498CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dres M, Teboul JL, Anguel N et al (2014) Extravascular lung water, B-type natriuretic peptide, and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med 42:1882–1889CrossRefPubMedGoogle Scholar
  41. 41.
    Dres M, Roux D, Pham T et al (2017) Prevalence and impact on weaning of pleural effusion at the time of liberation from mechanical ventilation: a multicenter prospective observational study. Anesthesiology 126:1107–1115CrossRefPubMedGoogle Scholar
  42. 42.
    Umbrello M, Mistraletti G, Galimberti A et al (2017) Drainage of pleural effusion improves diaphragmatic function in mechanically ventilated patients. Crit Care Resusc J 19:64–70Google Scholar
  43. 43.
    Martin AD, Smith BK, Davenport PD et al (2011) Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 15:R84CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bissett BM, Leditschke IA, Neeman T et al (2016) Inspiratory muscle training to enhance recovery from mechanical ventilation: a randomised trial. Thorax 71:812–819CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Doorduin J, Sinderby CA, Beck J et al (2012) The calcium sensitizer levosimendan improves human diaphragm function. Am J Respir Crit Care Med 185:90–95CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gordon AC, Perkins GD, Singer M et al (2016) Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med 375:1638–1648CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jiang JR, Tsai TH, Jerng JS et al (2004) Ultrasonographic evaluation of liver/spleen movements and extubation outcome. Chest 126:179–185CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lu Z, Xu Q, Yuan Y, Zhang G, Guo F, Ge H (2016) Diaphragmatic dysfunction is characterized by increased duration of mechanical ventilation in subjects with prolonged weaning. Respir Care 61:1316–1322CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Supinski GS, Callahan LA (2013) Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care 17:R120CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Laghi F, Cattapan SE, Jubran A et al (2003) Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med 167:120–127CrossRefPubMedGoogle Scholar
  51. 51.
    Carrie C, Gisbert-Mora C, Bonnardel E et al (2017) Ultrasonographic diaphragmatic excursion is inaccurate and not better than the MRC score for predicting weaning-failure in mechanically ventilated patients. Anaesth Crit Care Pain Med 36:9–14CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et cliniqueSorbonne UniversitésParisFrance
  2. 2.Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département ″R3S″)AP-HPParisFrance

Personalised recommendations