Skip to main content

Biodegradable Metals for Orthopedic Applications

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

A new round of studies on biodegradable metals from the end of last century has made remarkable progress as magnesium based alloys are now represented in orthopedic implants. The development is introduced in this chapter, including the degradation mechanism and its affecting factors, its bio-functions (promoting osteogenesis, antimicrobial and inhibiting tumor cell survival) and its orthopedic applications (bone fixation, bone substitute, osteomyelitis and Mg coating on bio-inert materials).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen YJ, Xu ZG, Smith CS, et al. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–73.

    Article  CAS  PubMed  Google Scholar 

  2. Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102:10.

    Article  Google Scholar 

  3. Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Res B. 2012;100B:10.

    Google Scholar 

  4. Bowen P, Drelich J, Buxbaum RE, et al. New approaches in evaluating metallic candidates for bioabsorbable stents. Emerg Mater Res. 2012;1:19.

    Google Scholar 

  5. Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang K, Tan L. Control of biodegradation of magnesium based metals for medical applications. In: Song G, editor. Corrosion prevention of magnesium alloys. Sawston: Woodhead Publishing Limited; 2013. p. 509–43.

    Chapter  Google Scholar 

  8. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77:1–34.

    Article  Google Scholar 

  9. Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.

    Article  CAS  PubMed  Google Scholar 

  10. Song GL. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49:1696–701.

    Article  CAS  Google Scholar 

  11. Yun YH, Xue DC, Schulz MJ, et al. Corrosion protection of biodegradable magnesium implants using anodization. Mater Sci Eng C. 2011;31:215–23.

    Article  CAS  Google Scholar 

  12. Yue TM, Huang KJ. Laser forming of Zr-based coatings on AZ91D magnesium alloy substrates for wear and corrosion resistance improvement. Mater Trans. 2011;52:810–3.

    Article  CAS  Google Scholar 

  13. Kim YK, Lee MH, Prasad MN, et al. Surface characteristics of magnesium alloys treated by anodic oxidation using pulse power. Multi-functional materials and structures, Pts 1 and 2. Adv Mater Res. 2008;47–50:1290–3.

    Article  Google Scholar 

  14. Lu P, Cao L, Liu Y, et al. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B. 2011;96B:101–9.

    Article  CAS  Google Scholar 

  15. Xu XH, Lu P, Cao L, et al. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B. 2011;96B:101–9.

    Article  CAS  Google Scholar 

  16. Wang Q, Jin S, Lin X, et al. Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB. J Mater Sci Technol. 2014;30:487–92.

    Article  CAS  Google Scholar 

  17. Guan SK, Wen CL, Peng L, et al. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl Surf Sci. 2009;255:6433–8.

    Article  CAS  Google Scholar 

  18. Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62:3276–9.

    Article  CAS  Google Scholar 

  19. Zhang XN, Song Y, Zhang SX, et al. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater. 2010;6:1736–42.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang XN, Li JN, Song Y, et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials. 2010;31:5782–8.

    Article  PubMed  CAS  Google Scholar 

  21. Xu LP, Pan F, Yu GN, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30:1512–23.

    Article  CAS  PubMed  Google Scholar 

  22. Smola B, Joska L, Březina V, et al. Microstructure, corrosion resistance and cytocompatibility of Mg–5Y–4 rare earth–0.5Zr (WE54) alloy. Mater Sci Eng C. 2012;32:659–64.

    Article  CAS  Google Scholar 

  23. Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res A. 2009;91A:221–30.

    Article  CAS  Google Scholar 

  24. Wei M, Zhang YJ, Zhang GZ. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. J Biomed Mater Res B. 2009;89B:408–14.

    Article  CAS  Google Scholar 

  25. Tan LL, Yan TT, Xiong DS, et al. Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater Sci Eng C. 2010;30:740–8.

    Article  CAS  Google Scholar 

  26. Kirkland N, Waterman J, Birbilis N, et al. Buffer-regulated biocorrosion of pure magnesium. J Mater Sci Mater Med. 2012;23:283–91.

    Article  CAS  PubMed  Google Scholar 

  27. Guo Y, Ren L, Liu C, et al. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats. Mater Sci Eng C. 2013;33:4470–4.

    Article  CAS  Google Scholar 

  28. Zeng J, Ren L, Yuan Y, et al. Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus. J Mater Sci Mater Med. 2013;24:2405–16.

    Article  CAS  PubMed  Google Scholar 

  29. Wan P, Wu J, Tan L, et al. Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents. Mater Sci Eng C. 2013;33:2885–90.

    Article  CAS  Google Scholar 

  30. Qu X, Jin F, Hao Y, et al. Nonlinear association between magnesium intake and the risk of colorectal cancer. Eur J Gastroenterol Hepatol. 2013;25:309–18.

    Article  PubMed  Google Scholar 

  31. Li M, Ren L, Li LH, et al. Cytotoxic effect on osteosarcoma MG-63 cells by degradation of magnesium. J Mater Sci Technol. 2014;30:888–93.

    Article  CAS  Google Scholar 

  32. Robinson DA, Griffith RW, Dan S, et al. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 2009;6:1869–77.

    Article  PubMed  CAS  Google Scholar 

  33. Ren L, Lin X, Tan L, et al. Effect of surface coating on antibacterial behavior of magnesium based metals. Mater Lett. 2011;65:3509–11.

    Article  CAS  Google Scholar 

  34. Li Y, Liu G, Zhai Z, et al. Antibacterial properties of magnesium in an in vitro and in vivo model of implant-associated MRSA infection. Antimicrob Agents Chemother. 2014;58(12):7586–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chen L, Fu X, Pan H, et al. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep. 2016;6:27374.

    Article  CAS  Google Scholar 

  36. Chen Z, Mao X, Tan L, et al. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials. 2014;35:8553–65.

    Article  CAS  PubMed  Google Scholar 

  37. Zhai Z, Xinhua Q, Li H, et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials. 2014;35:6299–310.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng MQ, Wahafu T, Jiang GF, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6:24134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials. 2016;112:287–302.

    Article  PubMed  CAS  Google Scholar 

  40. Tan L, Yu X, Wan P, et al. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013;29:503–13.

    Article  CAS  Google Scholar 

  41. Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72.

    Article  CAS  Google Scholar 

  42. Zavgorodniy AV, Borrero-Lopez O, Hoffman M, et al. Mechanical stability of two-step chemically deposited hydroxyapatite coating on Ti substrate: effects of various surface pretreatments. J Biomed Mater Res B. 2011;99B:58–69.

    Article  CAS  Google Scholar 

  43. Zhang EL, Xu LP, Yu GN, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A. 2009;90A:882–93.

    Article  CAS  Google Scholar 

  44. Xin YC, Huo KF, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008;4:2008–15.

    Article  CAS  PubMed  Google Scholar 

  45. Witte F, Calliess T, Windhagen H. Biodegradable synthetic implant materials. Clinical applications and immunological aspects. Orthopade. 2008;37:125–30.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng C. 2009;29:1559–68.

    Article  CAS  Google Scholar 

  47. Kannan MB, Dietzel W, Raman RKS, et al. Hydrogen-induced-cracking in magnesium alloy under cathodic polarization. Scripta Mater. 2007;57:579–81.

    Article  CAS  Google Scholar 

  48. Winzer N, Atrens A, Dietzel W, et al. Magnesium stress corrosion cracking. T Nonferr Metal Soc. 2007;17:S150–S5.

    CAS  Google Scholar 

  49. Atrens A, Liu M, Abidin NIZ. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B. 2011;176:1609–36.

    Article  CAS  Google Scholar 

  50. Wu W, Gastaldi D, Yang KT, et al. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Mater Sci Eng B. 2011;176:1733–40.

    Article  CAS  Google Scholar 

  51. Zheng YF, Gu XN, Zhou WR, et al. Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-In simulated body fluid. Acta Biomater. 2010;6:4605–13.

    Article  PubMed  CAS  Google Scholar 

  52. Yang K, Tan L, Ren Y, et al. Study on biodegradation behavior of AZ31 magnesium alloy. Rare Metals Lett. 2009;28:26–30.

    CAS  Google Scholar 

  53. Das SK, Davis LA. High performance aerospace alloys via rapid solidification processing. Mater Sci Eng. 1988;98:1–12.

    Article  CAS  Google Scholar 

  54. Mantovani D, Levesque J, Hermawan H, et al. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater. 2008;4:284–95.

    Article  PubMed  CAS  Google Scholar 

  55. Ryan MF. The role of magnesium in clinical biochemistry: an overview. Ann Clin Biochem. 1991;28:8.

    Article  Google Scholar 

  56. Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004;15:710–6.

    Article  CAS  PubMed  Google Scholar 

  57. Noronha JL, Matuschak GM. Magnesium in critical illness: metabolism, assessment and treatment. Intensive Care Med. 2002;28:13.

    Article  Google Scholar 

  58. Jones J. Early life nutrition and bone development in children. Nestle NutrWorkshop Series Pediatric. Program. 2011;68:7.

    Google Scholar 

  59. New SA, Bolton-Smith C, Grubb DA, et al. Nutritional influences on bone mineraldensity: a cross-sectional study in premenopausal women. Am J Clin Nutr. 1997;65:9.

    Article  Google Scholar 

  60. Blumenthal NC, Betts F, Posner AS. Stabilization of amorphous calcium phosphateby Mg and ATP. Calcif Tissue Res. 1997;23:6.

    Google Scholar 

  61. Yano K, Heilbrun LK, Wasnich RD, et al. The relationship between diet and bone mineral contentof multiple skeletal sites in elderly Japanese-Americanmen and women living in Hawaii. Am J Clin Nutr. 1985;42:12.

    Article  Google Scholar 

  62. Freudenheim JL, Johnson NE, Smith EL. Relationships between usual nutrient intake and bone mineral content of women 35-65 years of age: longitudinal and cross sectional analysis. Am J Clin Nutr. 1986;44:4.

    Article  Google Scholar 

  63. Tucker KL, Hannan MT, Chen H, et al. Potassium, magnesium, and fruitand vegetable intakes are associated with greater bonemineral density in elderly men and women. Am J Clin Nutr. 1999;69:10.

    Article  Google Scholar 

  64. Carpenter TO, Mackowiak SJ, Troiano N, et al. Osteocalcin and itsmessage: relationship to bone histologyin magnesium-deprived rats. Am J Phys. 1992;263:8.

    Google Scholar 

  65. Rude RK, Kirchen ME, Gruber HE, et al. Magnesium deficiency-induced osteoporosis in the rat: uncoupling of bone formation and bone resorption. Magnes Res. 1999;12:11.

    Google Scholar 

  66. Rude RKKM, Gruber HE, Stasky AA, et al. Magnesium deficiency induces bone loss in the rat. Miner Electrolyte Metab. 1998;24:7.

    Article  Google Scholar 

  67. Kenney MAMH, Williams L. Effects of magnesium deficiency on strength, mass and composition of rat femur. Calcif Tissue Int. 1994;54:6.

    Article  Google Scholar 

  68. Rude RK, Gruber HE, Norton HJ, et al. Dietary magnesium reduction to 25% of nutrient requirements disrupts bone and mineral metabolism in rat. Bone. 2005;37:9.

    Article  CAS  Google Scholar 

  69. Lambotte A. L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse. Bull Mém Soc Nat Chir. 1932;28:1325–34.

    Google Scholar 

  70. Verbrugge J. L’utilisation du magnésium dans le traitement chirurgical des fractures. Bull Mém Soc Nat Chir. 1937;59:813–23.

    Google Scholar 

  71. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.

    Article  CAS  PubMed  Google Scholar 

  72. Wu LL, Feyerabend F, Schilling F. Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomater. 2015;27:11.

    Article  CAS  Google Scholar 

  73. Li ZJ, Gu XN, Lou SQ, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–44.

    Article  CAS  PubMed  Google Scholar 

  74. Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone. Bone. 2001;28:8.

    Article  Google Scholar 

  75. Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012;8:2360–74.

    Article  CAS  PubMed  Google Scholar 

  76. Liu C, Wan P, Tan L, et al. Preclinical investigation of an innovative Mg-based bone graft substitute for potential orthopedic applications. J Orthop Transl. 2014;2:139–48.

    Google Scholar 

  77. Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 2016;113:716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials. 2016;81:84–92.

    Article  CAS  PubMed  Google Scholar 

  79. Chen X. Magnesium-based implants: beyond fixators. J Orthop Transl. 2017;10:4.

    Google Scholar 

  80. Ewald A, Gluckermann SK, Thull R, et al. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hendriks JGE, van Horn JR, van der Mei HC, et al. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004;25:545–56.

    Article  CAS  PubMed  Google Scholar 

  82. Harris LG, Mead L, Müller-Oberländer E, et al. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res A. 2006;78A:50–8.

    Article  CAS  Google Scholar 

  83. Yoshinari M, Oda Y, Kato T, et al. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials. 2001;22:2043–8.

    Article  CAS  PubMed  Google Scholar 

  84. Kawalec JS, Brown SA, Payer JH, et al. Mixed-metal fretting corrosion of Ti6Al4V and wrought cobalt alloy. J Biomed Mater Res. 1995;29:867–73.

    Article  CAS  PubMed  Google Scholar 

  85. Song B, Li W, Chen Z, et al. Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction-cadaveric experimental study. J Orthop Transl. 2017;8:32–9.

    Google Scholar 

  86. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:7.

    Article  CAS  Google Scholar 

  87. Anguita-Alonso P, Hanssen AD, Patel R. Prosthetic-join infections. Expert Rev Anti-Infect Ther. 2005;3:797–804.

    Article  PubMed  Google Scholar 

  88. Hu H, Zhang W, Qiao Y, et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:12.

    Google Scholar 

  89. Zhao LZ, Chu PK, Zhang YM, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B. 2009;91B:11.

    Article  CAS  Google Scholar 

  90. Liao JA, Zhu ZM, Mo AC, et al. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;5:7.

    Article  Google Scholar 

  91. Singh M, Singh RK, Passi D, et al. Management of pediatric mandibular fractures using bioresorbable plating system—efficacy, stability, and clinical outcomes: our experiences and literature review. J Oral Biol Craniofac Res. 2016;6:101–6.

    Article  PubMed  Google Scholar 

  92. Hu H, Zhang W, Qiao Y, et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–15.

    Article  CAS  PubMed  Google Scholar 

  93. Zhao LZ, Chu PK, Zhang YM, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B. 2009;91B:470–80.

    Article  CAS  Google Scholar 

  94. Liao JA, Zhu ZM, Mo AC, et al. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;5:261–7.

    CAS  Google Scholar 

  95. Song L, Xiao YF, Gan L, et al. The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings. Surf Coat Technol. 2012;206:2986–90.

    Article  CAS  Google Scholar 

  96. Necula BS, Fratila-Apachitei LE, Zaat SA, et al. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater. 2009;5:3573–80.

    Article  CAS  PubMed  Google Scholar 

  97. Zheng YF, Zhang BB, Wang BL, et al. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater. 2011;7:2758–67.

    Article  CAS  PubMed  Google Scholar 

  98. Das K, Bose S, Bandyopadhyay A, et al. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J Biomed Mater Res B Appl Biomater. 2008;87:455–60.

    Article  PubMed  CAS  Google Scholar 

  99. Takeshi Y, Misako T, Masayuki O. Silver dispersed stainless steel with antibacterial property. Tokyo: Kawasaki Steel Corporation; 2002.

    Google Scholar 

  100. Nan L, Liu Y, Lü M, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci Mater Med. 2008;19:3057–62.

    Article  CAS  PubMed  Google Scholar 

  101. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devicesand issues of antibiotic resistance. Biomaterials. 2006;27:9.

    Article  CAS  Google Scholar 

  102. Robinson DA, Griffith RW, Shechtman D, et al. In vitroantibacterial properties of magnesium metal against Escherichia coli, Pseudomonasaeruginosa and Staphylococcus aureus. Acta Biomater. 2010;6:9.

    Article  CAS  Google Scholar 

  103. Zeng JH, Ren L, Yuan YJ, et al. Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus. J Mater Sci. 2013;24:2405–16.

    CAS  Google Scholar 

  104. Zhang Y, Ren L, Li M, et al. Preliminary study on cytotoxic effect of biodegradation of magnesium on cancer cells. J Mater Sci Technol. 2012;28:769–72.

    Article  CAS  Google Scholar 

  105. Wang Q, S Jin XL, Zhang Y, et al. Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB. J Mater Sci Technol. 2014;39:6.

    Google Scholar 

  106. Horita Y, Ohashi K, Mukai M, et al. Suppression of the invasive capacity of rat ascites hepatoma cells by knockdown of slingshot or LIM kinase. J Biol Chem. 2008;283:9.

    Article  CAS  Google Scholar 

  107. Cekin E, Ipcioglu OM, Erkul BE, et al. The association of oxidative stress and nasal polyposis. J Int Med Res. 2009;37:6.

    Article  Google Scholar 

  108. Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:40.

    Article  CAS  Google Scholar 

  109. Mena S, Ortega A, Estrela JM. Oxidative stress in environmental induced carcinogenesis. Mutat Res. 2009;674:9.

    Google Scholar 

  110. Sakashita T, Takanami T, Yanase S, et al. Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. J Radiat Res. 2010;51:15.

    Article  CAS  Google Scholar 

  111. Brown NS, Jones A, Fujiyama C, et al. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res. 2000;60:5.

    Google Scholar 

  112. Inano H, Onoda M. Prevention of radiation-induced mammary tumors. Int J Radiat Oncol Biol Phys. 2002;52:12.

    Article  Google Scholar 

  113. Rajagopalan S, Meng XP, Ramasamy S, et al. Reactive oxygen species produced by macrophage-derived foamcells regulate the activity of vascular matrix metallo proteinases in vitro. Implications for therosclerotic plague stability. J Clin Investig. 1996;98:8.

    Article  Google Scholar 

  114. Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science. 1975;190:152–4.

    Article  CAS  PubMed  Google Scholar 

  115. Nan M, Yangmei C, Bangcheng Y. Magnesium metal—a potential biomaterial with antibone cancer properties. J Biomed Mater Res A. 2014;102A:8.

    Google Scholar 

  116. Yu XB, Zhao DW, Huang SB, et al. Biodegradable magnesium screws and vascularized iliac grafting for displaced femoral neck fracture in young adults. BMC Musculoskelet Dis. 2015;16:329.

    Article  CAS  Google Scholar 

  117. Tan LL, Wang Q, Lin X, et al. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomater. 2014;10:2333–40.

    Article  CAS  PubMed  Google Scholar 

  118. Dziuba D, Meyer-Lindenberg A, Seitz JM, et al. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomater. 2013;9:8548–60.

    Article  CAS  PubMed  Google Scholar 

  119. Wolters L, Angrisani N, Seitz J, et al. Applicability of degradable magnesium LAE442 alloy plate-screw systems in a rabbit model. Biomed Tech. 2013;58:2.

    Google Scholar 

  120. Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online. 2013;12:62.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Niu JL, Yuan GY, Liao Y, et al. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating. Mater Sci Eng C. 2013;33:4833–41.

    Article  CAS  Google Scholar 

  122. Plaass C, Ettinger S, Sonnow L, et al. Early results using a biodegradable magnesium screw for modified chevron osteotomies. J Orthopaed Res. 2016;34:2207–14.

    Article  Google Scholar 

  123. Biber R, Pauser J, Gesslein M, et al. Magnesium-based absorbable metal screws for intra-articular fracture fixation. Case Rep Orthop. 2016;2016:9673174.

    PubMed  PubMed Central  Google Scholar 

  124. Van Heest A, Swiontowski M. Bone-graft substitutes. Lancet. 1999;353(Suppl 1):2.

    Google Scholar 

  125. Lewandrowski K, Gresser JD, Wise DL, et al. Bioresorbable bone graft substitutes of different osteoconductivities: an istologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid) based cement implants in rats. Biomaterials. 2000;21:8.

    Google Scholar 

  126. Giannoudis P, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36:8.

    Article  Google Scholar 

  127. Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: any specific needs? Injury. 2011;42:8.

    Google Scholar 

  128. Summers BN, Eisenstein S. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71:4.

    Google Scholar 

  129. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3:4.

    Article  Google Scholar 

  130. Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopedic implants for internal fixation: a review. Biomaterials. 2000;21:7.

    Google Scholar 

  131. McBride E. Magnesium screw and nail transfixion in fractures. South Med J. 1938;31:508–15.

    Article  Google Scholar 

  132. Verbrugge J. La tolérance du tissu osseux vis-à-vis du magnésium métallique. Presse Med. 1933;55:1112–4.

    Google Scholar 

  133. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–8.

    Article  CAS  PubMed  Google Scholar 

  134. Witte F, Ulrich H, Rudert M, et al. Biodegradable magnesium scaffolds: part I: appropriate inflammatory response. J Biomed Mater Res A. 2007;81A:748–56.

    Article  CAS  Google Scholar 

  135. Witte F, Ulrich H, Palm C, et al. Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling. J Biomed Mater Res A. 2007;81A:757–65.

    Article  CAS  Google Scholar 

  136. Liu C, Wan P, Tan LL, et al. Preclinical investigation of an innovative magnesium-based bone graft substitutefor potential orthopaedic applications. J Orthopaed Transl. 2014;2:10.

    Google Scholar 

  137. Capuccini C, Torricelli P, Boanini E, et al. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A. 2009;89:7.

    Google Scholar 

  138. Gheduzzi S, Webb JJC, Miles AW. Mechanical characterisation of three percutaneous vertebroplasty biomaterials. J Mater Sci Mater Med. 2006;17:421–6.

    Article  CAS  PubMed  Google Scholar 

  139. An YH, Draughn RA. Mechanical testing of bone and bone-implant interface. Boca Raton: CRC Press; 2000.

    Google Scholar 

  140. Morgan EF, Yetkinler DN, Constantz BR, Dauskardt RH. Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behavior. J Mater Sci Mater Med. 1997;8:12.

    Article  Google Scholar 

  141. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10(Suppl 2):8.

    Google Scholar 

  142. Peters CL, Hines JL, Bachus KN, et al. Biological effects of calcium sulfate as a bone graft substitute in ovine metaphyseal defects. J Biomed Mater Res A. 2006;76A:7.

    Article  CAS  Google Scholar 

  143. Tang J, Wang J, Xie X, et al. Surface coating reduces degradation rate of magnesium alloy developed for orthopaedic applications. J Orthopaed Transl. 2013;1:8.

    Article  Google Scholar 

  144. Han J, Wan P, Ge Y, et al. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application. Mater Sci Eng C. 2016;58:13.

    Article  CAS  Google Scholar 

  145. Sanchez AHM, Luthringer BJC, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015;13:16–31.

    Article  CAS  Google Scholar 

  146. Kuhlmann J, Bartsch I, Willbold E, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 2013;9:8.

    Article  CAS  Google Scholar 

  147. Robinson DA, Griffith RW, Shechtman D, et al. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 2010;6:1869–77.

    Article  CAS  PubMed  Google Scholar 

  148. Yang L, Liu L, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations. Biomaterials. 2016;106:14.

    Google Scholar 

  149. Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R Rep. 2009;66:1–70.

    Article  CAS  Google Scholar 

  150. Lin X, Tan L, Wan P, et al. Characterization of micro-arc oxidation coating post-treated by hydrofluoric acid on biodegradable ZK60 magnesium alloy. Surf Coat Technol. 2013;232:899–905.

    Article  CAS  Google Scholar 

  151. Lin X, Wang X, Tan L, et al. Effect of preparation parameters on the properties of hydroxyapatite containing micro-arc oxidation coating on biodegradable ZK60 magnesium alloy. Ceram Int. 2014;40:10043–51.

    Article  CAS  Google Scholar 

  152. Dorozhkin SV. 7—Surface modification of magnesium and its biodegradable alloys by calcium orthophosphate coatings to improve corrosion resistance and biocompatibility. In: TSNS N, Park I-S, Lee M-H, editors. Surface modification of magnesium and its alloys for biomedical applications. Sawston: Woodhead Publishing; 2015. p. 151–91.

    Chapter  Google Scholar 

  153. Gan J, Tan L, Yang K, et al. Bioactive Ca-P coating with self-sealing structure on pure magnesium. J Mater Sci Mater Med. 2013;24:889–901.

    Article  CAS  PubMed  Google Scholar 

  154. Fukumoto S, Sugahara K, Yamamoto A, et al. Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium. Mater Trans. 2003;44:518–23.

    Article  CAS  Google Scholar 

  155. Tsubakino H, Yamamoto A, Fukumoto S, et al. High-purity magnesium coating on magnesium alloys by vapor deposition technique for improving corrosion resistance. Mater Trans. 2003;44:504–10.

    Article  CAS  Google Scholar 

  156. Cheng P, Han P, Zhao C, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials. 2016;81:14–26.

    Article  CAS  PubMed  Google Scholar 

  157. Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials. 2017;112:287–302.

    Article  CAS  PubMed  Google Scholar 

  158. Lin X, Tan L, Wang Q, et al. In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Mater Sci Eng C Mater Biol Appl. 2013;33:3881–8.

    Article  CAS  PubMed  Google Scholar 

  159. Salunke P, Shanov V, Witte F. High purity biodegradable magnesium coating for implant application. Mater Sci Eng B. 2011;176:1711–7.

    Article  CAS  Google Scholar 

  160. Li X, Gao P, Wan P, et al. Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: in vitro and in vivo study. Sci Rep. 2017;7:40755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors thank the financial support from the National Natural Science Foundation of China (No. 81401773, 31500777), National High Technology Research and Development Program of China (No. 2015AA033701), Key Program of China on Biomaterials Research and Tissue and Organ Replacement (No. 2016YFC1101804), CAS-Croucher Funding Scheme for Joint Laboratories (CAS 14303), Hong Kong RGC Collaborative Research Fund (CRF, C4028-14GF) and Institute of Metal Research, Chinese Academy of Sciences (No.2015-ZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, K., Tan, L., Wan, P., Yu, X., Ma, Z. (2017). Biodegradable Metals for Orthopedic Applications. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-73664-8_11

Download citation

Publish with us

Policies and ethics