Biodegradable Metals for Orthopedic Applications

  • Ke Yang
  • Lili Tan
  • Peng Wan
  • Xiaoming Yu
  • Zheng Ma


A new round of studies on biodegradable metals from the end of last century has made remarkable progress as magnesium based alloys are now represented in orthopedic implants. The development is introduced in this chapter, including the degradation mechanism and its affecting factors, its bio-functions (promoting osteogenesis, antimicrobial and inhibiting tumor cell survival) and its orthopedic applications (bone fixation, bone substitute, osteomyelitis and Mg coating on bio-inert materials).


Biodegradable metal Magnesium alloy Biofunction Orthopedics Antimicrobial Bone substitute Bone fixation Coating Degradation Osteogenesis Tumor 



The authors thank the financial support from the National Natural Science Foundation of China (No. 81401773, 31500777), National High Technology Research and Development Program of China (No. 2015AA033701), Key Program of China on Biomaterials Research and Tissue and Organ Replacement (No. 2016YFC1101804), CAS-Croucher Funding Scheme for Joint Laboratories (CAS 14303), Hong Kong RGC Collaborative Research Fund (CRF, C4028-14GF) and Institute of Metal Research, Chinese Academy of Sciences (No.2015-ZD01).


  1. 1.
    Chen YJ, Xu ZG, Smith CS, et al. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Trumbo P, Schlicker S, Yates AA, et al. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102:10.CrossRefGoogle Scholar
  3. 3.
    Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Res B. 2012;100B:10.Google Scholar
  4. 4.
    Bowen P, Drelich J, Buxbaum RE, et al. New approaches in evaluating metallic candidates for bioabsorbable stents. Emerg Mater Res. 2012;1:19.Google Scholar
  5. 5.
    Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yang K, Tan L. Control of biodegradation of magnesium based metals for medical applications. In: Song G, editor. Corrosion prevention of magnesium alloys. Sawston: Woodhead Publishing Limited; 2013. p. 509–43.CrossRefGoogle Scholar
  8. 8.
    Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77:1–34.CrossRefGoogle Scholar
  9. 9.
    Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Song GL. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49:1696–701.CrossRefGoogle Scholar
  11. 11.
    Yun YH, Xue DC, Schulz MJ, et al. Corrosion protection of biodegradable magnesium implants using anodization. Mater Sci Eng C. 2011;31:215–23.CrossRefGoogle Scholar
  12. 12.
    Yue TM, Huang KJ. Laser forming of Zr-based coatings on AZ91D magnesium alloy substrates for wear and corrosion resistance improvement. Mater Trans. 2011;52:810–3.CrossRefGoogle Scholar
  13. 13.
    Kim YK, Lee MH, Prasad MN, et al. Surface characteristics of magnesium alloys treated by anodic oxidation using pulse power. Multi-functional materials and structures, Pts 1 and 2. Adv Mater Res. 2008;47–50:1290–3.CrossRefGoogle Scholar
  14. 14.
    Lu P, Cao L, Liu Y, et al. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B. 2011;96B:101–9.CrossRefGoogle Scholar
  15. 15.
    Xu XH, Lu P, Cao L, et al. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. J Biomed Mater Res B. 2011;96B:101–9.CrossRefGoogle Scholar
  16. 16.
    Wang Q, Jin S, Lin X, et al. Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB. J Mater Sci Technol. 2014;30:487–92.CrossRefGoogle Scholar
  17. 17.
    Guan SK, Wen CL, Peng L, et al. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl Surf Sci. 2009;255:6433–8.CrossRefGoogle Scholar
  18. 18.
    Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62:3276–9.CrossRefGoogle Scholar
  19. 19.
    Zhang XN, Song Y, Zhang SX, et al. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater. 2010;6:1736–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang XN, Li JN, Song Y, et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials. 2010;31:5782–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Xu LP, Pan F, Yu GN, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30:1512–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Smola B, Joska L, Březina V, et al. Microstructure, corrosion resistance and cytocompatibility of Mg–5Y–4 rare earth–0.5Zr (WE54) alloy. Mater Sci Eng C. 2012;32:659–64.CrossRefGoogle Scholar
  23. 23.
    Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res A. 2009;91A:221–30.CrossRefGoogle Scholar
  24. 24.
    Wei M, Zhang YJ, Zhang GZ. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. J Biomed Mater Res B. 2009;89B:408–14.CrossRefGoogle Scholar
  25. 25.
    Tan LL, Yan TT, Xiong DS, et al. Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater Sci Eng C. 2010;30:740–8.CrossRefGoogle Scholar
  26. 26.
    Kirkland N, Waterman J, Birbilis N, et al. Buffer-regulated biocorrosion of pure magnesium. J Mater Sci Mater Med. 2012;23:283–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Guo Y, Ren L, Liu C, et al. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats. Mater Sci Eng C. 2013;33:4470–4.CrossRefGoogle Scholar
  28. 28.
    Zeng J, Ren L, Yuan Y, et al. Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus. J Mater Sci Mater Med. 2013;24:2405–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Wan P, Wu J, Tan L, et al. Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents. Mater Sci Eng C. 2013;33:2885–90.CrossRefGoogle Scholar
  30. 30.
    Qu X, Jin F, Hao Y, et al. Nonlinear association between magnesium intake and the risk of colorectal cancer. Eur J Gastroenterol Hepatol. 2013;25:309–18.PubMedCrossRefGoogle Scholar
  31. 31.
    Li M, Ren L, Li LH, et al. Cytotoxic effect on osteosarcoma MG-63 cells by degradation of magnesium. J Mater Sci Technol. 2014;30:888–93.CrossRefGoogle Scholar
  32. 32.
    Robinson DA, Griffith RW, Dan S, et al. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 2009;6:1869–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Ren L, Lin X, Tan L, et al. Effect of surface coating on antibacterial behavior of magnesium based metals. Mater Lett. 2011;65:3509–11.CrossRefGoogle Scholar
  34. 34.
    Li Y, Liu G, Zhai Z, et al. Antibacterial properties of magnesium in an in vitro and in vivo model of implant-associated MRSA infection. Antimicrob Agents Chemother. 2014;58(12):7586–91.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chen L, Fu X, Pan H, et al. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep. 2016;6:27374.CrossRefGoogle Scholar
  36. 36.
    Chen Z, Mao X, Tan L, et al. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials. 2014;35:8553–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhai Z, Xinhua Q, Li H, et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials. 2014;35:6299–310.PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng MQ, Wahafu T, Jiang GF, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6:24134.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials. 2016;112:287–302.PubMedCrossRefGoogle Scholar
  40. 40.
    Tan L, Yu X, Wan P, et al. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013;29:503–13.CrossRefGoogle Scholar
  41. 41.
    Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72.CrossRefGoogle Scholar
  42. 42.
    Zavgorodniy AV, Borrero-Lopez O, Hoffman M, et al. Mechanical stability of two-step chemically deposited hydroxyapatite coating on Ti substrate: effects of various surface pretreatments. J Biomed Mater Res B. 2011;99B:58–69.CrossRefGoogle Scholar
  43. 43.
    Zhang EL, Xu LP, Yu GN, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A. 2009;90A:882–93.CrossRefGoogle Scholar
  44. 44.
    Xin YC, Huo KF, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008;4:2008–15.PubMedCrossRefGoogle Scholar
  45. 45.
    Witte F, Calliess T, Windhagen H. Biodegradable synthetic implant materials. Clinical applications and immunological aspects. Orthopade. 2008;37:125–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci Eng C. 2009;29:1559–68.CrossRefGoogle Scholar
  47. 47.
    Kannan MB, Dietzel W, Raman RKS, et al. Hydrogen-induced-cracking in magnesium alloy under cathodic polarization. Scripta Mater. 2007;57:579–81.CrossRefGoogle Scholar
  48. 48.
    Winzer N, Atrens A, Dietzel W, et al. Magnesium stress corrosion cracking. T Nonferr Metal Soc. 2007;17:S150–S5.Google Scholar
  49. 49.
    Atrens A, Liu M, Abidin NIZ. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B. 2011;176:1609–36.CrossRefGoogle Scholar
  50. 50.
    Wu W, Gastaldi D, Yang KT, et al. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Mater Sci Eng B. 2011;176:1733–40.CrossRefGoogle Scholar
  51. 51.
    Zheng YF, Gu XN, Zhou WR, et al. Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-In simulated body fluid. Acta Biomater. 2010;6:4605–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang K, Tan L, Ren Y, et al. Study on biodegradation behavior of AZ31 magnesium alloy. Rare Metals Lett. 2009;28:26–30.Google Scholar
  53. 53.
    Das SK, Davis LA. High performance aerospace alloys via rapid solidification processing. Mater Sci Eng. 1988;98:1–12.CrossRefGoogle Scholar
  54. 54.
    Mantovani D, Levesque J, Hermawan H, et al. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater. 2008;4:284–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Ryan MF. The role of magnesium in clinical biochemistry: an overview. Ann Clin Biochem. 1991;28:8.CrossRefGoogle Scholar
  56. 56.
    Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem. 2004;15:710–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Noronha JL, Matuschak GM. Magnesium in critical illness: metabolism, assessment and treatment. Intensive Care Med. 2002;28:13.CrossRefGoogle Scholar
  58. 58.
    Jones J. Early life nutrition and bone development in children. Nestle NutrWorkshop Series Pediatric. Program. 2011;68:7.Google Scholar
  59. 59.
    New SA, Bolton-Smith C, Grubb DA, et al. Nutritional influences on bone mineraldensity: a cross-sectional study in premenopausal women. Am J Clin Nutr. 1997;65:9.CrossRefGoogle Scholar
  60. 60.
    Blumenthal NC, Betts F, Posner AS. Stabilization of amorphous calcium phosphateby Mg and ATP. Calcif Tissue Res. 1997;23:6.Google Scholar
  61. 61.
    Yano K, Heilbrun LK, Wasnich RD, et al. The relationship between diet and bone mineral contentof multiple skeletal sites in elderly Japanese-Americanmen and women living in Hawaii. Am J Clin Nutr. 1985;42:12.CrossRefGoogle Scholar
  62. 62.
    Freudenheim JL, Johnson NE, Smith EL. Relationships between usual nutrient intake and bone mineral content of women 35-65 years of age: longitudinal and cross sectional analysis. Am J Clin Nutr. 1986;44:4.CrossRefGoogle Scholar
  63. 63.
    Tucker KL, Hannan MT, Chen H, et al. Potassium, magnesium, and fruitand vegetable intakes are associated with greater bonemineral density in elderly men and women. Am J Clin Nutr. 1999;69:10.CrossRefGoogle Scholar
  64. 64.
    Carpenter TO, Mackowiak SJ, Troiano N, et al. Osteocalcin and itsmessage: relationship to bone histologyin magnesium-deprived rats. Am J Phys. 1992;263:8.Google Scholar
  65. 65.
    Rude RK, Kirchen ME, Gruber HE, et al. Magnesium deficiency-induced osteoporosis in the rat: uncoupling of bone formation and bone resorption. Magnes Res. 1999;12:11.Google Scholar
  66. 66.
    Rude RKKM, Gruber HE, Stasky AA, et al. Magnesium deficiency induces bone loss in the rat. Miner Electrolyte Metab. 1998;24:7.CrossRefGoogle Scholar
  67. 67.
    Kenney MAMH, Williams L. Effects of magnesium deficiency on strength, mass and composition of rat femur. Calcif Tissue Int. 1994;54:6.CrossRefGoogle Scholar
  68. 68.
    Rude RK, Gruber HE, Norton HJ, et al. Dietary magnesium reduction to 25% of nutrient requirements disrupts bone and mineral metabolism in rat. Bone. 2005;37:9.CrossRefGoogle Scholar
  69. 69.
    Lambotte A. L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse. Bull Mém Soc Nat Chir. 1932;28:1325–34.Google Scholar
  70. 70.
    Verbrugge J. L’utilisation du magnésium dans le traitement chirurgical des fractures. Bull Mém Soc Nat Chir. 1937;59:813–23.Google Scholar
  71. 71.
    Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.PubMedCrossRefGoogle Scholar
  72. 72.
    Wu LL, Feyerabend F, Schilling F. Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomater. 2015;27:11.CrossRefGoogle Scholar
  73. 73.
    Li ZJ, Gu XN, Lou SQ, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone. Bone. 2001;28:8.CrossRefGoogle Scholar
  75. 75.
    Gu XN, Xie XH, Li N, et al. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012;8:2360–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Liu C, Wan P, Tan L, et al. Preclinical investigation of an innovative Mg-based bone graft substitute for potential orthopedic applications. J Orthop Transl. 2014;2:139–48.Google Scholar
  77. 77.
    Lee JW, Han HS, Han KJ, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 2016;113:716–21.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials. 2016;81:84–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Chen X. Magnesium-based implants: beyond fixators. J Orthop Transl. 2017;10:4.Google Scholar
  80. 80.
    Ewald A, Gluckermann SK, Thull R, et al. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online. 2006;5:22.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hendriks JGE, van Horn JR, van der Mei HC, et al. Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials. 2004;25:545–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Harris LG, Mead L, Müller-Oberländer E, et al. Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res A. 2006;78A:50–8.CrossRefGoogle Scholar
  83. 83.
    Yoshinari M, Oda Y, Kato T, et al. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials. 2001;22:2043–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Kawalec JS, Brown SA, Payer JH, et al. Mixed-metal fretting corrosion of Ti6Al4V and wrought cobalt alloy. J Biomed Mater Res. 1995;29:867–73.PubMedCrossRefGoogle Scholar
  85. 85.
    Song B, Li W, Chen Z, et al. Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction-cadaveric experimental study. J Orthop Transl. 2017;8:32–9.Google Scholar
  86. 86.
    Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:7.CrossRefGoogle Scholar
  87. 87.
    Anguita-Alonso P, Hanssen AD, Patel R. Prosthetic-join infections. Expert Rev Anti-Infect Ther. 2005;3:797–804.PubMedCrossRefGoogle Scholar
  88. 88.
    Hu H, Zhang W, Qiao Y, et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:12.Google Scholar
  89. 89.
    Zhao LZ, Chu PK, Zhang YM, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B. 2009;91B:11.CrossRefGoogle Scholar
  90. 90.
    Liao JA, Zhu ZM, Mo AC, et al. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;5:7.CrossRefGoogle Scholar
  91. 91.
    Singh M, Singh RK, Passi D, et al. Management of pediatric mandibular fractures using bioresorbable plating system—efficacy, stability, and clinical outcomes: our experiences and literature review. J Oral Biol Craniofac Res. 2016;6:101–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Hu H, Zhang W, Qiao Y, et al. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904–15.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhao LZ, Chu PK, Zhang YM, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B. 2009;91B:470–80.CrossRefGoogle Scholar
  94. 94.
    Liao JA, Zhu ZM, Mo AC, et al. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine. 2010;5:261–7.Google Scholar
  95. 95.
    Song L, Xiao YF, Gan L, et al. The effect of antibacterial ingredients and coating microstructure on the antibacterial properties of plasma sprayed hydroxyapatite coatings. Surf Coat Technol. 2012;206:2986–90.CrossRefGoogle Scholar
  96. 96.
    Necula BS, Fratila-Apachitei LE, Zaat SA, et al. In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus. Acta Biomater. 2009;5:3573–80.PubMedCrossRefGoogle Scholar
  97. 97.
    Zheng YF, Zhang BB, Wang BL, et al. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag. Acta Biomater. 2011;7:2758–67.PubMedCrossRefGoogle Scholar
  98. 98.
    Das K, Bose S, Bandyopadhyay A, et al. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J Biomed Mater Res B Appl Biomater. 2008;87:455–60.PubMedCrossRefGoogle Scholar
  99. 99.
    Takeshi Y, Misako T, Masayuki O. Silver dispersed stainless steel with antibacterial property. Tokyo: Kawasaki Steel Corporation; 2002.Google Scholar
  100. 100.
    Nan L, Liu Y, Lü M, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci Mater Med. 2008;19:3057–62.PubMedCrossRefGoogle Scholar
  101. 101.
    Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devicesand issues of antibiotic resistance. Biomaterials. 2006;27:9.CrossRefGoogle Scholar
  102. 102.
    Robinson DA, Griffith RW, Shechtman D, et al. In vitroantibacterial properties of magnesium metal against Escherichia coli, Pseudomonasaeruginosa and Staphylococcus aureus. Acta Biomater. 2010;6:9.CrossRefGoogle Scholar
  103. 103.
    Zeng JH, Ren L, Yuan YJ, et al. Short-term effect of magnesium implantation on the osteomyelitis modeled animals induced by Staphylococcus aureus. J Mater Sci. 2013;24:2405–16.Google Scholar
  104. 104.
    Zhang Y, Ren L, Li M, et al. Preliminary study on cytotoxic effect of biodegradation of magnesium on cancer cells. J Mater Sci Technol. 2012;28:769–72.CrossRefGoogle Scholar
  105. 105.
    Wang Q, S Jin XL, Zhang Y, et al. Cytotoxic effects of biodegradation of pure Mg and MAO-Mg on tumor cells of MG63 and KB. J Mater Sci Technol. 2014;39:6.Google Scholar
  106. 106.
    Horita Y, Ohashi K, Mukai M, et al. Suppression of the invasive capacity of rat ascites hepatoma cells by knockdown of slingshot or LIM kinase. J Biol Chem. 2008;283:9.CrossRefGoogle Scholar
  107. 107.
    Cekin E, Ipcioglu OM, Erkul BE, et al. The association of oxidative stress and nasal polyposis. J Int Med Res. 2009;37:6.CrossRefGoogle Scholar
  108. 108.
    Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:40.CrossRefGoogle Scholar
  109. 109.
    Mena S, Ortega A, Estrela JM. Oxidative stress in environmental induced carcinogenesis. Mutat Res. 2009;674:9.Google Scholar
  110. 110.
    Sakashita T, Takanami T, Yanase S, et al. Radiation biology of Caenorhabditis elegans: germ cell response, aging and behavior. J Radiat Res. 2010;51:15.CrossRefGoogle Scholar
  111. 111.
    Brown NS, Jones A, Fujiyama C, et al. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res. 2000;60:5.Google Scholar
  112. 112.
    Inano H, Onoda M. Prevention of radiation-induced mammary tumors. Int J Radiat Oncol Biol Phys. 2002;52:12.CrossRefGoogle Scholar
  113. 113.
    Rajagopalan S, Meng XP, Ramasamy S, et al. Reactive oxygen species produced by macrophage-derived foamcells regulate the activity of vascular matrix metallo proteinases in vitro. Implications for therosclerotic plague stability. J Clin Investig. 1996;98:8.CrossRefGoogle Scholar
  114. 114.
    Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science. 1975;190:152–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Nan M, Yangmei C, Bangcheng Y. Magnesium metal—a potential biomaterial with antibone cancer properties. J Biomed Mater Res A. 2014;102A:8.Google Scholar
  116. 116.
    Yu XB, Zhao DW, Huang SB, et al. Biodegradable magnesium screws and vascularized iliac grafting for displaced femoral neck fracture in young adults. BMC Musculoskelet Dis. 2015;16:329.CrossRefGoogle Scholar
  117. 117.
    Tan LL, Wang Q, Lin X, et al. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomater. 2014;10:2333–40.PubMedCrossRefGoogle Scholar
  118. 118.
    Dziuba D, Meyer-Lindenberg A, Seitz JM, et al. Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant. Acta Biomater. 2013;9:8548–60.PubMedCrossRefGoogle Scholar
  119. 119.
    Wolters L, Angrisani N, Seitz J, et al. Applicability of degradable magnesium LAE442 alloy plate-screw systems in a rabbit model. Biomed Tech. 2013;58:2.Google Scholar
  120. 120.
    Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online. 2013;12:62.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Niu JL, Yuan GY, Liao Y, et al. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating. Mater Sci Eng C. 2013;33:4833–41.CrossRefGoogle Scholar
  122. 122.
    Plaass C, Ettinger S, Sonnow L, et al. Early results using a biodegradable magnesium screw for modified chevron osteotomies. J Orthopaed Res. 2016;34:2207–14.CrossRefGoogle Scholar
  123. 123.
    Biber R, Pauser J, Gesslein M, et al. Magnesium-based absorbable metal screws for intra-articular fracture fixation. Case Rep Orthop. 2016;2016:9673174.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Van Heest A, Swiontowski M. Bone-graft substitutes. Lancet. 1999;353(Suppl 1):2.Google Scholar
  125. 125.
    Lewandrowski K, Gresser JD, Wise DL, et al. Bioresorbable bone graft substitutes of different osteoconductivities: an istologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid) based cement implants in rats. Biomaterials. 2000;21:8.Google Scholar
  126. 126.
    Giannoudis P, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36:8.CrossRefGoogle Scholar
  127. 127.
    Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: any specific needs? Injury. 2011;42:8.Google Scholar
  128. 128.
    Summers BN, Eisenstein S. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71:4.Google Scholar
  129. 129.
    Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3:4.CrossRefGoogle Scholar
  130. 130.
    Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopedic implants for internal fixation: a review. Biomaterials. 2000;21:7.Google Scholar
  131. 131.
    McBride E. Magnesium screw and nail transfixion in fractures. South Med J. 1938;31:508–15.CrossRefGoogle Scholar
  132. 132.
    Verbrugge J. La tolérance du tissu osseux vis-à-vis du magnésium métallique. Presse Med. 1933;55:1112–4.Google Scholar
  133. 133.
    Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Witte F, Ulrich H, Rudert M, et al. Biodegradable magnesium scaffolds: part I: appropriate inflammatory response. J Biomed Mater Res A. 2007;81A:748–56.CrossRefGoogle Scholar
  135. 135.
    Witte F, Ulrich H, Palm C, et al. Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling. J Biomed Mater Res A. 2007;81A:757–65.CrossRefGoogle Scholar
  136. 136.
    Liu C, Wan P, Tan LL, et al. Preclinical investigation of an innovative magnesium-based bone graft substitutefor potential orthopaedic applications. J Orthopaed Transl. 2014;2:10.Google Scholar
  137. 137.
    Capuccini C, Torricelli P, Boanini E, et al. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A. 2009;89:7.Google Scholar
  138. 138.
    Gheduzzi S, Webb JJC, Miles AW. Mechanical characterisation of three percutaneous vertebroplasty biomaterials. J Mater Sci Mater Med. 2006;17:421–6.PubMedCrossRefGoogle Scholar
  139. 139.
    An YH, Draughn RA. Mechanical testing of bone and bone-implant interface. Boca Raton: CRC Press; 2000.Google Scholar
  140. 140.
    Morgan EF, Yetkinler DN, Constantz BR, Dauskardt RH. Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behavior. J Mater Sci Mater Med. 1997;8:12.CrossRefGoogle Scholar
  141. 141.
    Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10(Suppl 2):8.Google Scholar
  142. 142.
    Peters CL, Hines JL, Bachus KN, et al. Biological effects of calcium sulfate as a bone graft substitute in ovine metaphyseal defects. J Biomed Mater Res A. 2006;76A:7.CrossRefGoogle Scholar
  143. 143.
    Tang J, Wang J, Xie X, et al. Surface coating reduces degradation rate of magnesium alloy developed for orthopaedic applications. J Orthopaed Transl. 2013;1:8.CrossRefGoogle Scholar
  144. 144.
    Han J, Wan P, Ge Y, et al. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application. Mater Sci Eng C. 2016;58:13.CrossRefGoogle Scholar
  145. 145.
    Sanchez AHM, Luthringer BJC, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015;13:16–31.CrossRefGoogle Scholar
  146. 146.
    Kuhlmann J, Bartsch I, Willbold E, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 2013;9:8.CrossRefGoogle Scholar
  147. 147.
    Robinson DA, Griffith RW, Shechtman D, et al. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 2010;6:1869–77.PubMedCrossRefGoogle Scholar
  148. 148.
    Yang L, Liu L, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations. Biomaterials. 2016;106:14.Google Scholar
  149. 149.
    Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R Rep. 2009;66:1–70.CrossRefGoogle Scholar
  150. 150.
    Lin X, Tan L, Wan P, et al. Characterization of micro-arc oxidation coating post-treated by hydrofluoric acid on biodegradable ZK60 magnesium alloy. Surf Coat Technol. 2013;232:899–905.CrossRefGoogle Scholar
  151. 151.
    Lin X, Wang X, Tan L, et al. Effect of preparation parameters on the properties of hydroxyapatite containing micro-arc oxidation coating on biodegradable ZK60 magnesium alloy. Ceram Int. 2014;40:10043–51.CrossRefGoogle Scholar
  152. 152.
    Dorozhkin SV. 7—Surface modification of magnesium and its biodegradable alloys by calcium orthophosphate coatings to improve corrosion resistance and biocompatibility. In: TSNS N, Park I-S, Lee M-H, editors. Surface modification of magnesium and its alloys for biomedical applications. Sawston: Woodhead Publishing; 2015. p. 151–91.CrossRefGoogle Scholar
  153. 153.
    Gan J, Tan L, Yang K, et al. Bioactive Ca-P coating with self-sealing structure on pure magnesium. J Mater Sci Mater Med. 2013;24:889–901.PubMedCrossRefGoogle Scholar
  154. 154.
    Fukumoto S, Sugahara K, Yamamoto A, et al. Improvement of corrosion resistance and adhesion of coating layer for magnesium alloy coated with high purity magnesium. Mater Trans. 2003;44:518–23.CrossRefGoogle Scholar
  155. 155.
    Tsubakino H, Yamamoto A, Fukumoto S, et al. High-purity magnesium coating on magnesium alloys by vapor deposition technique for improving corrosion resistance. Mater Trans. 2003;44:504–10.CrossRefGoogle Scholar
  156. 156.
    Cheng P, Han P, Zhao C, et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials. 2016;81:14–26.PubMedCrossRefGoogle Scholar
  157. 157.
    Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials. 2017;112:287–302.PubMedCrossRefGoogle Scholar
  158. 158.
    Lin X, Tan L, Wang Q, et al. In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Mater Sci Eng C Mater Biol Appl. 2013;33:3881–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Salunke P, Shanov V, Witte F. High purity biodegradable magnesium coating for implant application. Mater Sci Eng B. 2011;176:1711–7.CrossRefGoogle Scholar
  160. 160.
    Li X, Gao P, Wan P, et al. Novel bio-functional magnesium coating on porous Ti6Al4V orthopaedic implants: in vitro and in vivo study. Sci Rep. 2017;7:40755.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Ke Yang
    • 1
  • Lili Tan
    • 1
  • Peng Wan
    • 1
  • Xiaoming Yu
    • 1
  • Zheng Ma
    • 1
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations