Skip to main content

Sepsis Biomarkers

  • Chapter
  • First Online:
Handbook of Sepsis

Abstract

Accurate and early diagnosis of sepsis is essential to enable rapid initiation of appropriate therapy. Biomarkers can be used to aid in diagnosis, but also to provide an indication of severity and prognosis and of response to treatment. C-reactive protein and procalcitonin are the biomarkers that have been most widely studied in sepsis, but there are many other potential candidates, including CD64 expression, adrenomedullin, sTREM-1, and presepsin. All currently available biomarkers reflect the magnitude of the host response to an aggression and are affected by inflammatory conditions other than sepsis. This lack of specificity makes them more useful to rule out than to rule in infection as a diagnosis. Panels of biomarkers may be better than individual biomarkers to aid diagnosis, but which combinations of biomarkers are likely to be of greatest use remains a matter of ongoing research. Whichever biomarker(s) is used, levels must be interpreted in the context of the full clinical picture and never in isolation.

The authors have no conflicts of interest to declare related to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    Article  CAS  Google Scholar 

  2. Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193:259–72.

    Article  CAS  Google Scholar 

  3. Shankar-Hari M, Rubenfeld GD. Understanding long-term outcomes following sepsis: implications and challenges. Curr Infect Dis Rep. 2016;18:37.

    Article  Google Scholar 

  4. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45:486–552.

    Article  Google Scholar 

  5. Pewsner D, Battaglia M, Minder C, et al. Ruling a diagnosis in or out with “SpPIn” and “SnNOut”: a note of caution. BMJ. 2004;329:209–13.

    Article  Google Scholar 

  6. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.

    Article  Google Scholar 

  7. Tillett WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med. 1930;52:561–71.

    Article  CAS  Google Scholar 

  8. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999;7:169–77.

    Article  CAS  Google Scholar 

  9. National Institute for Health and Care Excellence. Rheumatoid arthritis: national clinical guideline for management and treatment in adults. London: Royal College of Physicians; 2009.

    Google Scholar 

  10. Markanday A. Acute phase reactants in infections: evidence-based review and a guide for clinicians. Open Forum Infect Dis. 2015;2:ofv098.

    Article  Google Scholar 

  11. Silvestre JP, Coelho LM, Povoa PM. Impact of fulminant hepatic failure in C-reactive protein? J Crit Care. 2010;25:657–12.

    Article  Google Scholar 

  12. Muller B, White JC, Nylen ES, et al. Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis. J Clin Endocrinol Metab. 2001;86:396–404.

    CAS  PubMed  Google Scholar 

  13. Assicot M, Gendrel D, Carsin H, et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet. 1993;341:515–8.

    Article  CAS  Google Scholar 

  14. Mofidi R, Suttie SA, Patil PV, et al. The value of procalcitonin at predicting the severity of acute pancreatitis and development of infected pancreatic necrosis: systematic review. Surgery. 2009;146:72–81.

    Article  Google Scholar 

  15. Meisner M, Adina H, Schmidt J. Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit Care. 2006;10:R1.

    Article  Google Scholar 

  16. Meisner M, Rauschmayer C, Schmidt J, et al. Early increase of procalcitonin after cardiovascular surgery in patients with postoperative complications. Intensive Care Med. 2002;28:1094–102.

    Article  CAS  Google Scholar 

  17. Grace E, Turner RM. Use of procalcitonin in patients with various degrees of chronic kidney disease including renal replacement therapy. Clin Infect Dis. 2014;59:1761–7.

    Article  CAS  Google Scholar 

  18. Djebara S, Biston P, Fosse E, et al. Time course of CD64, a leukocyte activation marker, during cardiopulmonary bypass surgery. Shock. 2017;47:158–64.

    Article  CAS  Google Scholar 

  19. Dimoula A, Pradier O, Kassengera Z, et al. Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clin Infect Dis. 2014;58:820–9.

    Article  CAS  Google Scholar 

  20. Wang X, Li ZY, Zeng L, et al. Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: a meta-analysis. Crit Care. 2015;19:245.

    Article  Google Scholar 

  21. de Jong E, de Lange DW, Beishuizen A, et al. Neutrophil CD64 expression as a longitudinal biomarker for severe disease and acute infection in critically ill patients. Int J Lab Hematol. 2016;38:576–84.

    Article  Google Scholar 

  22. Marino R, Struck J, Maisel AS, et al. Plasma adrenomedullin is associated with short-term mortality and vasopressor requirement in patients admitted with sepsis. Crit Care. 2014;18:R34.

    Article  Google Scholar 

  23. Caironi P, Latini R, Struck J, et al. Circulating biologically active adrenomedullin (bio-ADM) predicts hemodynamic support requirement and mortality during sepsis. Chest. 2017;152:312–20.

    Article  Google Scholar 

  24. Simon TP, Martin L, Doemming S, et al. Plasma adrenomedullin in critically ill patients with sepsis after major surgery: a pilot study. J Crit Care. 2017;38:68–72.

    Article  CAS  Google Scholar 

  25. Bouchon A, Facchetti F, Weigand MA, et al. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410:1103–7.

    Article  CAS  Google Scholar 

  26. Su L, Liu D, Chai W, et al. Role of sTREM-1 in predicting mortality of infection: a systematic review and meta-analysis. BMJ Open. 2016;6:e010314.

    Article  Google Scholar 

  27. Behnes M, Bertsch T, Lepiorz D, et al. Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Crit Care. 2014;18:507.

    Article  Google Scholar 

  28. Yu H, Qi Z, Hang C, et al. Evaluating the value of dynamic procalcitonin and presepsin measurements for patients with severe sepsis. Am J Emerg Med. 2017;35:835–41.

    Article  Google Scholar 

  29. Matera G, Quirino A, Peronace C, et al. Soluble CD14 subtype-a new biomarker in predicting the outcome of critically ill septic patients. Am J Med Sci. 2017;353:543–51.

    Article  Google Scholar 

  30. Zhang X, Liu D, Liu YN, et al. The accuracy of presepsin (sCD14-ST) for the diagnosis of sepsis in adults: a meta-analysis. Crit Care. 2015;19:323.

    Article  Google Scholar 

  31. Wu CC, Lan HM, Han ST, et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and meta-analysis. Ann Intensive Care. 2017;7:91.

    Article  Google Scholar 

  32. Kumar A, Haery C, Paladugu B, et al. The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels. J Infect Dis. 2006;193:251–8.

    Article  CAS  Google Scholar 

  33. Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    Article  CAS  Google Scholar 

  34. de Jong PR, Gonzalez-Navajas JM, Jansen NJ. The digestive tract as the origin of systemic inflammation. Crit Care. 2016;20:279.

    Article  Google Scholar 

  35. Ugarte H, Silva E, Mercan D, et al. Procalcitonin used as a marker of infection in the intensive care unit. Crit Care Med. 1999;27:498–504.

    Article  CAS  Google Scholar 

  36. Povoa P, Coelho L, Almeida E, et al. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect. 2005;11:101–8.

    Article  CAS  Google Scholar 

  37. Santonocito C, De Loecker I, Donadello K, et al. C-reactive protein kinetics after major surgery. Anesth Analg. 2014;119:624–9.

    Article  CAS  Google Scholar 

  38. Povoa P, Coelho L, Almeida E, et al. Early identification of intensive care unit-acquired infections with daily monitoring of C-reactive protein: a prospective observational study. Crit Care. 2006;10:R63.

    Article  Google Scholar 

  39. Uzzan B, Cohen R, Nicolas P, et al. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med. 2006;34:1996–2003.

    Article  CAS  Google Scholar 

  40. Castelli GP, Pognani C, Cita M, et al. Procalcitonin as a prognostic and diagnostic tool for septic complications after major trauma. Crit Care Med. 2009;37:1845–9.

    Article  Google Scholar 

  41. Daniels JM, Schoorl M, Snijders D, et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest. 2010;138:1108–15.

    Article  CAS  Google Scholar 

  42. Gaini S, Koldkjaer OG, Pedersen C, et al. Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: a prospective study. Crit Care. 2006;10:R53.

    Article  Google Scholar 

  43. Ljungstrom L, Pernestig AK, Jacobsson G, et al. Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein, and lactate in patients with suspected bacterial sepsis. PLoS One. 2017;12:e0181704.

    Article  Google Scholar 

  44. Kapasi AJ, Dittrich S, Gonzalez IJ, et al. Host biomarkers for distinguishing bacterial from non-bacterial causes of acute febrile illness: a comprehensive review. PLoS One. 2016;11:e0160278.

    Article  Google Scholar 

  45. Lobo SM, Lobo FR, Bota DP, et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–9.

    Article  CAS  Google Scholar 

  46. Grander W, Dunser M, Stollenwerk B, et al. C-reactive protein levels and post-ICU mortality in nonsurgical intensive care patients. Chest. 2010;138:856–62.

    Article  Google Scholar 

  47. Al-Subaie N, Reynolds T, Myers A, et al. C-reactive protein as a predictor of outcome after discharge from the intensive care: a prospective observational study. Br J Anaesth. 2010;105:318–25.

    Article  CAS  Google Scholar 

  48. Giamarellos-Bourboulis EJ, Tsangaris I, Kanni T, et al. Procalcitonin as an early indicator of outcome in sepsis: a prospective observational study. J Hosp Infect. 2011;77:58–63.

    Article  CAS  Google Scholar 

  49. Hong DY, Park SO, Kim JW, et al. Serum procalcitonin: an independent predictor of clinical outcome in health care-associated pneumonia. Respiration. 2016;92:241–51.

    Article  CAS  Google Scholar 

  50. Liu D, Su L, Han G, et al. Prognostic value of procalcitonin in adult patients with sepsis: a systematic review and meta-analysis. PLoS One. 2015;10:e0129450.

    Article  Google Scholar 

  51. Karlsson S, Heikkinen M, Pettila V, et al. Predictive value of procalcitonin decrease in patients with severe sepsis: a prospective observational study. Crit Care. 2010;14:R205.

    Article  Google Scholar 

  52. Ranzani OT, Prada LF, Zampieri FG, et al. Failure to reduce C-reactive protein levels more than 25% in the last 24 hours before intensive care unit discharge predicts higher in-hospital mortality: a cohort study. J Crit Care. 2012;27:525–15.

    Article  Google Scholar 

  53. Georgopoulou AP, Savva A, Giamarellos-Bourboulis EJ, et al. Early changes of procalcitonin may advise about prognosis and appropriateness of antimicrobial therapy in sepsis. J Crit Care. 2011;26:331–7.

    Article  Google Scholar 

  54. Schuetz P, Birkhahn R, Sherwin R, et al. Serial procalcitonin predicts mortality in severe sepsis patients: results from the multicenter procalcitonin MOnitoring SEpsis (MOSES) study. Crit Care Med. 2017;45:781–9.

    Article  CAS  Google Scholar 

  55. Hoeboer SH, Groeneveld AB. Changes in circulating procalcitonin versus C-reactive protein in predicting evolution of infectious disease in febrile, critically ill patients. PLoS One. 2013;8:e65564.

    Article  CAS  Google Scholar 

  56. Schmit X, Vincent JL. The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection. 2008;36:213–9.

    Article  CAS  Google Scholar 

  57. Lisboa T, Seligman R, Diaz E, et al. C-reactive protein correlates with bacterial load and appropriate antibiotic therapy in suspected ventilator-associated pneumonia. Crit Care Med. 2008;36:166–71.

    Article  CAS  Google Scholar 

  58. Bruns AH, Oosterheert JJ, Hak E, et al. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J. 2008;32:726–32.

    Article  CAS  Google Scholar 

  59. Oliveira CF, Botoni FA, Oliveira CR, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med. 2013;41:2336–43.

    Article  CAS  Google Scholar 

  60. Christ-Crain M, Stolz D, Bingisser R, et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med. 2006;174:84–93.

    Article  CAS  Google Scholar 

  61. Christ-Crain M, Jaccard-Stolz D, Bingisser R, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet. 2004;363:600–7.

    Article  CAS  Google Scholar 

  62. Schuetz P, Christ-Crain M, Thomann R, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA. 2009;302:1059–66.

    Article  CAS  Google Scholar 

  63. Bouadma L, Luyt CE, Tubach F, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375:463–74.

    Article  CAS  Google Scholar 

  64. de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–27.

    Article  Google Scholar 

  65. Nobre V, Harbarth S, Graf JD, et al. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177:498–505.

    Article  CAS  Google Scholar 

  66. Schroeder S, Hochreiter M, Koehler T, et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbeck’s Arch Surg. 2009;394:221–6.

    Article  CAS  Google Scholar 

  67. Shehabi Y, Sterba M, Garrett PM, et al. Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis: a randomized controlled trial. Am J Respir Crit Care Med. 2014;190:1102–10.

    Article  CAS  Google Scholar 

  68. Bloos F, Trips E, Nierhaus A, et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med. 2016;176:1266–76.

    Article  Google Scholar 

  69. Deliberato RO, Marra AR, Sanches PR, et al. Clinical and economic impact of procalcitonin to shorten antimicrobial therapy in septic patients with proven bacterial infection in an intensive care setting. Diagn Microbiol Infect Dis. 2013;76:266–71.

    Article  CAS  Google Scholar 

  70. Chu DC, Mehta AB, Walkey AJ. Practice patterns and outcomes associated with procalcitonin use in critically ill patients with sepsis. Clin Infect Dis. 2017;64:1509–15.

    Article  Google Scholar 

  71. Jensen JU, Hein L, Lundgren B, et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011;39:2048–58.

    Article  CAS  Google Scholar 

  72. Andriolo BN, Andriolo RB, Salomao R, et al. Effectiveness and safety of procalcitonin evaluation for reducing mortality in adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst Rev. 2017;1:CD010959.

    PubMed  Google Scholar 

  73. Vincent JL, Teixeira L. Sepsis biomarkers: value and limitations. Am J Respir Crit Care Med. 2014;190:1081–2.

    Article  Google Scholar 

  74. Kofoed K, Andersen O, Kronborg G, et al. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care. 2007;11:R38.

    Article  Google Scholar 

  75. Gibot S, Bene MC, Noel R, et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med. 2012;186:65–71.

    Article  CAS  Google Scholar 

  76. Balk RA, Kadri SS, Cao Z, et al. Effect of procalcitonin testing on health-care utilization and costs in critically ill patients in the United States. Chest. 2017;151:23–33.

    Article  Google Scholar 

  77. Westwood M, Ramaekers B, Whiting P, et al. Procalcitonin testing to guide antibiotic therapy for the treatment of sepsis in intensive care settings and for suspected bacterial infection in emergency department settings: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2015;19:v–xxv. 1–236

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vincent M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vincent, JL., Lelubre, C. (2018). Sepsis Biomarkers. In: Wiersinga, W., Seymour, C. (eds) Handbook of Sepsis. Springer, Cham. https://doi.org/10.1007/978-3-319-73506-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73506-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73505-4

  • Online ISBN: 978-3-319-73506-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics