Mitochondria and Kidney Disease

  • Kenneth E. McMartin


The kidney maintains body homeostasis by regulating the excretion and/or conservation of nutrients such as glucose and amino acids, of electrolytes such as sodium and potassium, and of xenobiotics such as drugs or toxic compounds. Reabsorption and secretion of these compounds utilize transport pathways that rely on the energy produced by mitochondrial oxidative phosphorylation, which generates ATP. Because of the high demand for ATP, renal tubule cells contain a large number of mitochondria, particularly the proximal tubule cells, where most of the transporter pathways are located. Damage to the kidney is generally classified as either chronic kidney disease (CKD) or acute kidney injury (AKI), where CKD is a slow loss of kidney function over an extended period of time, while AKI is a sudden loss of kidney function in hours to days. Both CKD and AKI are associated with damage to tubular cells, which is likely to result from a loss of mitochondrial function. Some drugs and toxic compounds, such as cisplatin, gentamycin, tenofovir, heavy metals and contrast media, are well known to induce mitochondrial damage leading to cell death and eventually to AKI. This chapter will however focus on two less known compounds, ethylene glycol and diethylene glycol that both induce AKI and can result in complete loss of kidney function. Neither compound itself is nephrotoxic, rather they are metabolized to oxalic acid and diglycolic acid, respectively, which in turn damage proximal tubule cells. Both oxalate, in its crystalline form calcium oxalate monohydrate, and diglycolate produce mitochondrial dysfunction, either by direct inhibition of mitochondrial respiration or by increasing reactive oxygen species production.


Proximal tubular necrosis Acute kidney injury Ethylene glycol Diethylene glycol Oxalate crystals Diglycolic acid 


  1. Akuse RM, Eke FU, Ademola AD et al (2012) Diagnosing renal failure due to diethylene glycol in children in a resource-constrained setting. Pediatr Nephrol 27:1021–1028CrossRefPubMedGoogle Scholar
  2. Alfred S, Coleman P, Harris D, Wigmore T, Stachowski E, Graudins A (2005) Delayed neurologic sequelae resulting from epidemic diethylene glycol poisoning. Clin Toxicol 43:155–159CrossRefGoogle Scholar
  3. Bachmann E, Golberg L (1971) Reappraisal of the toxicology of ethylene glycol. III. Mitochondrial effects. Food Cosmet Toxicol 9:39–55CrossRefPubMedGoogle Scholar
  4. Baliga R, Ueda N, Walker PD, Shah SV (1999) Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev 31:971–997CrossRefPubMedGoogle Scholar
  5. Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73CrossRefPubMedGoogle Scholar
  6. Besenhofer LM, Adegboyega PA, Bartels M, Filary MJ, Perala AW, McLaren MC, McMartin KE (2010) Inhibition of metabolism of diethylene glycol prevents target organ toxicity in rats. Toxicol Sci 117:25–35CrossRefPubMedGoogle Scholar
  7. Besenhofer LM, McLaren MC, Latimer B, Bartels M, Filary MJ, Perala AW, McMartin KE (2011) Role of tissue metabolite accumulation in the renal toxicity of diethylene glycol. Toxicol Sci 123:374–383CrossRefPubMedGoogle Scholar
  8. Bonventre JV (2014) Kidney injury molecule-1: a translational journey. Trans Am Clin Climatol Assoc 125:293–299PubMedPubMedCentralGoogle Scholar
  9. Cao LC, Honeyman TW, Cooney R, Kennington L, Scheid CR, Jonassen JA (2004) Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 66:1890–1900CrossRefPubMedGoogle Scholar
  10. Che R, Yuan Y, Huang S, Zhang A (2014) Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 306:F367–F378CrossRefPubMedGoogle Scholar
  11. Chevalier RL (2016) The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol 311:F145–F161CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colell A, Garcia-Ruiz C, Lluis JM, Coll O, Mari M, Fernandez-Checa JC (2003) Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J Biol Chem 278:33928–33935CrossRefPubMedGoogle Scholar
  13. Collins JM, Hennes DM, Holzgang CR et al (1970) Recovery after prolonged oliguria due to ethylene glycol intoxication. Arch Intern Med 125:1059–1062CrossRefPubMedGoogle Scholar
  14. Conklin L, Sejvar JJ, Kieszak S, Sabogal R, Sanchez C, Flanders D, Tulloch F, Victoria G, Rodriguez G, Sosa N, McGeehin MA, Schier JG (2014) Long-term renal and neurologic outcomes among survivors of diethylene glycol poisoning. JAMA Intern Med 174(6):912–917. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Conrad T, Landry GM, Aw TY, Nichols R, McMartin KE (2016) Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro. Clin Toxicol 54:501–511CrossRefGoogle Scholar
  16. Corley RA, Wilson DM, Hard GC, Stebbins KE, Bartels MJ, Soelberg JJ, Dryzga MD, Gingell R, McMartin KE, Snellings WM (2008) Dosimetry considerations in the enhanced sensitivity of male Wistar rats to chronic ethylene glycol-induced nephrotoxicity. Toxicol Appl Pharmacol 228:165–178CrossRefPubMedGoogle Scholar
  17. Cruzan C, Corley RA, Hard GC, Mertens JJWM, McMartin KE, Snellings WM, Gingell R, Deyo JA (2004) Subchronic toxicity of ethylene glycol in Wistar and F344 rats related to metabolism and clearance of metabolites. Toxicol Sci 81:502–501CrossRefPubMedGoogle Scholar
  18. Curhan GC (1999) Epidemiologic evidence for the role of oxalate in idiopathic nephrolithiasis. J Endourol 13:629–631CrossRefPubMedGoogle Scholar
  19. De Water R, Noordermeer C, van der Kwast TH, Nizze H, Boeve ER, Kok DJ, Schroder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771CrossRefPubMedGoogle Scholar
  20. Dickman K, Mandel L (1990) Differential effects of respiratory inhibitors on glycolysis in proximal tubules. Am J Physiol 258:F1608–F1615PubMedGoogle Scholar
  21. Duann P, Lianos EA, Ma J, Lin P-H (2016) Autophagy, innate immunity and tissue repair in acute kidney injury. Int J Mol Sci 17:662. CrossRefPubMedCentralGoogle Scholar
  22. Ebisuno S, Koul H, Menon M, Scheid C (1994) Oxalate transport in a line of porcine renal epithelial cells - LLC-PK1 cells. J Urol 152:237–242CrossRefPubMedGoogle Scholar
  23. Evan AP, Coe FL, Lingeman JE, Worcester E (2005) Insights on the pathology of kidney stone formation. Urol Res 33:383–389CrossRefPubMedGoogle Scholar
  24. Fähling M, Seeliger E, Patzak A, Persson PB (2017) Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol 13:169–180CrossRefPubMedGoogle Scholar
  25. Ferrari LA, Giannuzzi L (2005) Clinical parameters, postmortem analysis and estimation of lethal dose in victims of a massive intoxication with diethylene glycol. Forensic Sci Int 153:45–51CrossRefPubMedGoogle Scholar
  26. Freundt KJ, Weis N (1989) Transient renal impairment in rats after oral exposure to diethylene glycol. J Appl Toxicol 9:317–321CrossRefPubMedGoogle Scholar
  27. Gellerich FN, Gizatullina Z, Arandarcikaite O et al (2009) Extramitochondrial Ca2+ in the nanomolar range regulates glutamate-dependent oxidative phosphorylation on demand. PLoS One 4:e8181CrossRefPubMedPubMedCentralGoogle Scholar
  28. Granata S, Gassa AD, Tomei P, Lupo A, Zaza G (2015) Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab 12:49. CrossRefGoogle Scholar
  29. Green ML, Hatch M, Freel RW (2005) Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol 289:F536–F543CrossRefPubMedGoogle Scholar
  30. Guo C, McMartin KE (2005) The cytotoxicity of oxalate, metabolite of ethylene glycol, is due to calcium oxalate monohydrate formation. Toxicology 208:347–355CrossRefPubMedGoogle Scholar
  31. Hackett RL, Shevock PN, Khan SR (1995) Alteration in MDCK and LLCPK1 cells exposed to oxalate and calcium oxalate monohydrate crystals. Scanning Microsc 9:587–596PubMedGoogle Scholar
  32. Hall AM, Unwin RJ, Parker N, Duchen MR (2009) Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol 20:1293–1302CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hebert JL, Fabre M, Auzepy P, Paillas J (1978) Acute experimental poisoning by diethylene glycol: acid-base balance and histological data in male rats. Toxicol Eur Res 1:289–294Google Scholar
  34. Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D’Agati VD, Markowitz GS (2010) Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 78:1171–1177CrossRefPubMedGoogle Scholar
  35. Herold DA, Keil K, Bruns DE (1989) Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem Pharmacol 38:73–76CrossRefPubMedGoogle Scholar
  36. Hoppe B, Beck BB, Milliner D (2009) The primary hyperoxalurias. Kidney Int 75:1264–1271CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hovda KE, Guo C, Austin R, McMartin KE (2010) Renal toxicity of ethylene glycol results from internalization of calcium oxalate crystals by proximal tubule cells. Toxicol Lett 192:365–372CrossRefPubMedGoogle Scholar
  38. Huang HS, Ma MC, Chen J, Chen CF (2002) Changes in the oxidant-antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 167:2584–2593CrossRefPubMedGoogle Scholar
  39. Ishimoto Y, Inagi R (2016) Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant 31:1062–1069CrossRefPubMedGoogle Scholar
  40. Jacobsen D, Ovrebo S, Ostborg J, Sejersted OM (1984) Glycolate causes the acidosis in ethylene glycol poisoning and is effectively removed by hemodialysis. Acta Med Scand 216:409–416CrossRefPubMedGoogle Scholar
  41. Jacobsen D, Hewlett TP, Webb R, Brown ST, Ordinario AT, McMartin KE (1988) Ethylene glycol intoxication. Evaluation of kinetics and crystalluria. Am J Med 84:145–152CrossRefPubMedGoogle Scholar
  42. Jansen D, Peters E, Heemskerk S, Koster-Kamphuis L, Bouw MP, Roelofs HM, van Oeveren W, van Heijst AF, Pickkers P (2016) Tubular injury biomarkers to detect gentamicin-induced acute kidney injury in the neonatal intensive care unit. Am J Perinatol 33:180–187CrossRefPubMedGoogle Scholar
  43. Khan SR (1995) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23:71–79CrossRefPubMedGoogle Scholar
  44. Khan SR, Byer KJ, Thamilvan S, Hackett RL, McCormack WT, Benson NA, Vaughn KL, Erdos GW (1999) Crystal-cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J Am Soc Nephrol 10:S457–S463PubMedGoogle Scholar
  45. Khand FD, Gordge MP, Robertson WG, Noronha-Dutra AA, Hothersall JS (2002) Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Radic Biol Med 32:1339–1350CrossRefPubMedGoogle Scholar
  46. Kim J-S, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470CrossRefPubMedGoogle Scholar
  47. Kohjimoto Y, Kennington L, Scheid CR, Honeyman TW (1999) Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int 56:1432–1441CrossRefPubMedGoogle Scholar
  48. Konta T, Yamaoka M, Tanida H, Matsunaga T, Tomoike H (1998) Acute renal failure due to oxalate ingestion. Intern Med 37:762–765CrossRefPubMedGoogle Scholar
  49. Koul H, Ebisuno S, Renzulli L, Yanagawa M, Menon M, Scheid C (1994) Polarized distribution of oxalate transport systems in LLC-PK1 cells, a line of renal epithelial cells. Am J Phys 266:F266–F274Google Scholar
  50. Landry GL, Martin S, McMartin KE (2011) Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro. Toxicol Sci 124:35–44CrossRefPubMedGoogle Scholar
  51. Landry GM, Dunning CL, Conrad T, Hitt MJ, McMartin KE (2013) Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death. Toxicol Lett 221:176–184CrossRefPubMedGoogle Scholar
  52. Landry GM, Dunning CL, Abreo F, Latimer B, Orchard E, McMartin KE (2015) Diethylene glycol-induced toxicities show marked threshold dose response in rats. Toxicol Appl Pharmacol 282:244–251CrossRefPubMedGoogle Scholar
  53. Lash LH, Jones DP (1996) Mitochondrial toxicity in renal injury. In: Lash LH, Zalups RK (eds) Methods in toxicology. CRC Press, Boca Raton, pp 299–330Google Scholar
  54. Li Y, McMartin KE (2009) Strain differences in urinary factors that promote calcium oxalate crystal formation in kidney in ethylene glycol treated rats. Am J Physiol Renal Physiol 296:1080–1087CrossRefGoogle Scholar
  55. Li TK, Theorell H (1969) Human liver alcohol dehydrogenase: inhibition by pyrazole and pyrazole analogs. Acta Chem Scand A 23:892–902CrossRefGoogle Scholar
  56. Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci 91:6987–6991CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 52:1291–1301CrossRefPubMedGoogle Scholar
  58. Lindblom R, Higgins G, Coughlan M, de Haan JB (2015) Targeting mitochondria- and reactive oxygen species-driven pathogenesis in diabetic nephropathy. Rev Diabet Stud 12:134–156CrossRefPubMedPubMedCentralGoogle Scholar
  59. Maroni PD, Koul S, Chandhoke PS, Meacham RB, Koul HK (2005) Oxalate toxicity in culture mouse inner medullary collecting duct cells. J Urol 174:757–760CrossRefPubMedGoogle Scholar
  60. Marraffa JM, Holland MG, Stork CM, Hoy CD, Hodgman MJ (2008) Diethylene glycol: widely used solvent presents serious poisoning potential. J Emerg Med 35:401–406CrossRefPubMedGoogle Scholar
  61. Marshall TC (1982) Dose-dependent disposition of ethylene glycol in the rat after intravenous administration. J Toxicol Environ Health 10:397–409CrossRefPubMedGoogle Scholar
  62. Mathews JM, Parker MK, Mathews HB (1991) Metabolism and disposition of diethylene glycol in rat and dog. Drug Metab Dispos 19:1066–1070PubMedGoogle Scholar
  63. McMartin KE (2009) Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol 47:859–869CrossRefGoogle Scholar
  64. McMartin KE, Wallace KB (2005) Calcium oxalate monohydrate, a metabolite of ethylene glycol, is toxic for rat renal mitochondrial function. Toxicol Sci 84:195–200CrossRefPubMedGoogle Scholar
  65. Meimaridou E, Jacobson J, Seddon AM, Noronha-Dutra AA, Robertson WG, Hothersall JS (2005) Crystal and microparticle effects on MDCK cell superoxide production: oxalate-specific mitochondrial membrane potential changes. Free Radic Biol Med 38:1553–1564CrossRefPubMedGoogle Scholar
  66. Miller S, Pallan S, Gangji AS, Lukic D, Clase CM (2013) Mercury-associated nephrotic syndrome: a case report and systematic review of the literature. Am J Kidney Dis 62:135–138CrossRefPubMedGoogle Scholar
  67. Milliner DS, Wilson DM, Smith LH (2001) Phenotypic expression of primary hyperoxalurias: comparative features of types I and II. Kidney Int 59:31–36CrossRefPubMedGoogle Scholar
  68. Montekaitis RJ, Martell AE (1984) New multidentate ligands. XXV. The coordination chemistry of divalent metal ions with diglycolic acid, carboxymethyltartronic acid and ditartronic acid. J Coord Chem 13:265–271CrossRefGoogle Scholar
  69. Mowry JB, Spyker DA, Brooks DE, Zimmerman A, Schauben JL (2016) 2015 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 33rd Annual Report. Clin Toxicol 54:924–1109CrossRefGoogle Scholar
  70. Nowak G, Clifton GL, Bakajsova D (2008) Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. J Pharmacol Exp Ther 324:1155–1162CrossRefPubMedGoogle Scholar
  71. O’Brien KL, Selanikio JD, Hecdivert C et al (1998) Epidemic of pediatric deaths from acute renal failure caused by diethylene glycol poisoning. JAMA 279:1175–1180CrossRefPubMedGoogle Scholar
  72. Pardee AB, Potter VR (1949) Malonate inhibition of oxidations in the Krebs tricarboxylic acid cycle. J Biol Chem 178:241–250PubMedGoogle Scholar
  73. Pomara C, Fiore C, D’Errico S, Riezzo I, Fineschi V (2008) Calcium oxalate crystals in acute ethylene glycol poisoning: a confocal laser scanning microscope study in a fatal case. Clin Toxicol 46:322–324CrossRefGoogle Scholar
  74. Ramello A, Vitale C, Marangella M (2000) Epidemiology of nephrolithiasis. J Nephrol 13(Suppl 3):S45–S50PubMedGoogle Scholar
  75. Rashed T, Menon M, Thamilselvan S (2004) Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol 24:557–568CrossRefPubMedGoogle Scholar
  76. Reyes JL, Molina-Jijón E, Rodríguez-Muñoz R, Bautista-García P, Debray-García Y, Namorado Mdel C (2013) Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. Biomed Res Int 2013:730789. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Robinson CN, Latimer B, Abreo F, Broussard K, McMartin KE (2017) In-vivo evidence of nephrotoxicity and altered hepatic function in rats following administration of diglycolic acid, a metabolite of diethylene glycol. Clin Toxicol 55:96–105CrossRefGoogle Scholar
  78. Rollins YD, Filley CM, McNutt JT, Chalal S, Kleinschmidt-DeMasters BK (2002) Fulminant ascending paralysis as a delayed sequela of diethylene glycol (Sterno) ingestion. Neurology 59:1460–1463CrossRefPubMedGoogle Scholar
  79. Satrustegui J, Pardo B, del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87:29–67CrossRefPubMedGoogle Scholar
  80. Scheid CR, Koul HK, Kennington L, Hill WA (1995) Oxalate-induced damage to renal tubular cells. Scanning Microsc 9:1097–1107PubMedGoogle Scholar
  81. Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L (1996) Oxalate toxicity in LLC-PK1 cells: role of free radicals. Kidney Int 49:413–419CrossRefPubMedGoogle Scholar
  82. Schepers MSJ, Duim RAJ, Asselman M, Romijn JC, Schroder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 64:493–500CrossRefPubMedGoogle Scholar
  83. Schepers MSJ, Van Ballegooijen ES, Bangma CH, Verkoelen CF (2005a) Crystals cause acute necrotic death in renal proximal tubule cells, but not in collecting tubule cells. Kidney Int 68:1543–1553CrossRefPubMedGoogle Scholar
  84. Schepers MSJ, Van Ballegooijen ES, Bangma CH, Verkoelen CF (2005b) Oxalate is toxic to renal tubule cells only at supraphysiologic concentrations. Kidney Int 68:1660–1669CrossRefPubMedGoogle Scholar
  85. Schier JG, Barr DB, Li Z, Wolkin AF, Baker SE, Lewis LS, McGeehin MA (2011) Diethylene glycol in health products sold over-the-counter and imported from Asian countries. J Med Toxicol 7:33–38CrossRefPubMedGoogle Scholar
  86. Schier JG, Hunt DR, Perala A, McMartin KE, Bartels MJ, Lewis L, McGeehin MA, Flanders WD (2013) Characterizing concentrations of diethylene glycol and suspected metabolites in human serum, urine, and cerebrospinal fluid samples from the Panama DEG mass poisoning. Clin Toxicol 51:923–929CrossRefGoogle Scholar
  87. Soltoff SP (1986) ATP and the regulation of renal cell function. Annu Rev Physiol 48:9–31CrossRefPubMedGoogle Scholar
  88. Sosa NR, Rodriguez GM, Schier JG et al (2014) Clinical, laboratory, diagnostic, and histopathologic features of diethylene glycol poisoning – Panama, 2006. Ann Emerg Med 64:38–47CrossRefPubMedGoogle Scholar
  89. Sprando RL, Mossoba ME, Black T et al (2017) 28-day repeated dose response study of diglycolic acid: renal and hepatic effects. Food Chem Toxicol 106(Pt A):558–567. CrossRefPubMedGoogle Scholar
  90. Strzelecki T, McGraw BR, Scheid CR, Menon M (1989) Effect of oxalate on function of kidney mitochondria. J Urol 141:423–427CrossRefPubMedGoogle Scholar
  91. Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 157:1059–1063CrossRefPubMedGoogle Scholar
  92. Thamilselvan S, Byer KJ, Hackett RL, Khan SR (2000) Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:224–229CrossRefPubMedGoogle Scholar
  93. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31:3–9PubMedGoogle Scholar
  94. Vaidya VS, Ozer JS, Dieterle F, Collings FB, Ramirez V, Troth S, Muniappa N, Thudium D, Gerhold D, Holder DJ, Bobadilla NA, Marrer E, Perentes E, Cordier A, Vonderscher J, Maurer G, Goering PL, Sistare FD, Bonventre JV (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28:478–485CrossRefPubMedPubMedCentralGoogle Scholar
  95. Veena CK, Josephine A, Preetha SP, Rajesh NG, Varalakshmi P (2008) Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan. Eur J Pharmacol 579:330–336CrossRefPubMedGoogle Scholar
  96. Verkoelen CF, Romijn JC (1996) Oxalate transport and calcium oxalate renal stone disease. Urol Res 24:183–191CrossRefPubMedGoogle Scholar
  97. Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schroder FH, Romijn JC (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433CrossRefPubMedGoogle Scholar
  98. Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51CrossRefPubMedGoogle Scholar
  99. Wiener HL, Richardson KE (1989) Metabolism of diethylene glycol in male rats. Biochem Pharmacol 38:539–541CrossRefPubMedGoogle Scholar
  100. Zsengeller ZK, Ellezian L, Brown D et al (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 60:521–529CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmacology, Toxicology, and NeuroscienceLouisiana State University Health Sciences CenterShreveportUSA

Personalised recommendations