Skip to main content

Observations of Internal Tides in the Atlantic Ocean

  • Chapter
  • First Online:
Oceanic Internal Tides: Observations, Analysis and Modeling
  • 826 Accesses

Abstract

This chapter describes the measurements of internal tides in the Atlantic Ocean and in the Mediterranean Sea together with modeling of the generation and propagation of internal tides in some important regions of the Atlantic Ocean. The generation of internal tides is associated with the interaction of the currents of the barotropic tide with the slopes of the bottom topography. One of the most important ideas presented here is the strong generation of internal tides over submarine ridges. The generation and propagation of internal tides in the Strait of Gibraltar where the strongest internal tides on the globe exist are described. The generation of internal tides over the Mid-Atlantic Ridge in the South Atlantic is demonstrated on the basis of measurements in several regions near the ridge. The measurements reveal strong internal tides in Biscay Bay. Weaker internal tides are found in the Sargasso Sea. Measurements of internal tides on mooring clusters confirm the well known fact that internal tides are generated over the bottom slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso del Rosario JJ, Bruno Mejías BM, Vazquez-Lopez-Escobar A (2003) The influence of tidal hydrodynamic conditions on the generation of lee waves at the main sill of the Strait of Gibraltar. Deep-Sea Res 50:1005–1021

    Article  Google Scholar 

  • Alpers W, Salusti E (1983) Scylla and Charybdis observed from space. J Geophys Res 88(3):1800–1808

    Article  Google Scholar 

  • Androsov AA, Voltzinger NE, Kagan BA, Salusti ES (1993) Residual tidal currents in the Strait of Messina. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 29(4):522–531

    Google Scholar 

  • Androsov AA, Kagan BA, Romanenkov DA, Voltzinger NE (2002) Numerical modeling of barotropic tidal dynamics in the Strait of Messina. Advances Water Resources. 25:401–415

    Article  Google Scholar 

  • Ansong JK, Arbic BK, Buijsman MC, Richman JG, Shriver JF, Wallcraft AJ (2015) Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J Geophys Res 120:6057–6071. https://doi.org/10.1002/2015JC010998

    Article  Google Scholar 

  • Apel JR, Byrne HM, Proni JR, Charnell RL (1975) Observations of oceanic internal and surface waves from the earth resources technology satellite. J Geophys Res 80(6):865–881

    Article  Google Scholar 

  • Armi L, Farmer DM (1988) The flow of Mediterranean water through the Strait of Gibraltar. Farmer DM, Armi L (1988) The flow of Atlantic water through the Strait of Gibraltar. Prog Oceanogr 21:1–105

    Article  Google Scholar 

  • Atlantic Hydrophysical Polygon-70 (1983) Amerind Co. Oxonian Press, New Delhi

    Google Scholar 

  • Badulin SI, Shrira VI, Tsimring LS (1985) The trapping and vertical focusing of internal waves in a pycnocline due to the horizontal inhomogeneities of density and currents. J Fluid Mech 158:199–218

    Article  Google Scholar 

  • Baines PG (1973) The generation of internal tides by flat-bump topography. Deep-Sea Res 20:179–205

    Google Scholar 

  • Baines PG (1982) On internal tide generation models. Deep-Sea Res 29(3):307–338

    Article  Google Scholar 

  • Baines PG (2007) Internal tide generation by seamounts. Deep Sea Res 54(9):1486–1508. doi:10.1016 j.dsr.2007.05.009

    Google Scholar 

  • Barber NF (1963) The directional resolving power of an array of wave detectors. In: Ocean wave spectra. NY, Engelwood Cliffs, Prentice Hall, pp 137–150

    Google Scholar 

  • Bignami F, Salusti E (1990) Tidal currents and transient phenomena in the Strait of Messina: a review. In: Pratt LJ. (ed) The physical oceanography of sea straits, pp 95–124. Kluwer Academic, The Netherlands

    Google Scholar 

  • Bockel M (1962) Travaux Oceanographiques de l’ “Origny” a Gibraltar. Cah Oceanograph 14:325–329

    Google Scholar 

  • Bolshakov VN, Sabinin KD (1983) Mean characteristics of semidiurnal tidal currents in Polygon-70 and their variability. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 19(1):51–56

    Google Scholar 

  • Bondur VG (1995) The principles of monitoring the Earth from space for the need of the ecology and natural resources. Izv Vuzov Geodesy Aerophotography 12:14–38

    Google Scholar 

  • Bondur V, Keeler R, Gibson C (2005) Optical satellite imagery detection of internal wave effects from a submerged turbulent outfall in the stratified ocean. Geophys Res Lett 32:L12610. https://doi.org/10.1029/2005GL022390

    Google Scholar 

  • Bondur VG, Morozov EG, Belchansky GI, Grebenyuk YV (2006a) Radar survey and numerical modeling of internal tides in the shelf region, Investigation of the Earth from Space, pp 51–63

    Google Scholar 

  • Bondur VG, Morozov EG, Grebenyuk YV (2006b) Radar observations and numerical modeling of internal tides in the coastal zone of the North Atlantic region. Investigation of the Ocean from Space. IKI, Moscow, pp 21–29

    Google Scholar 

  • Boyce FM (1975) Internal waves in the Strait of Gibraltar. Deep Sea Res 22:597–610

    Google Scholar 

  • Brandt P, Alpers W, Backhaus JO (1996) Study of the generation and propagation of internal waves in the Strait of Gibraltar using a numerical model and synthetic aperture radar images of the European ERS 1 satellite. J Geophys Res 101:14,237–14,252

    Google Scholar 

  • Brandt P, Rubino A, Alpers W, Backhaus JO (1997) Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar Images from the ERS 1/2 Satellites. J Phys Oceanogr 27(5):648–663

    Article  Google Scholar 

  • Brandt P, Rubino A, Quadfasel D, Alpers W, Sellschopp J, Fiekas H-V (1999) Evidence for the influence of Atlantic-Ionian stream fluctuations on the tidally induced internal dynamics in the Strait of Messina. J Phys Oceanogr 29(5):1071–1080

    Article  Google Scholar 

  • Brickman D, Loder JW (1993) Energetics of the internal tide on northern Georges Bank. J Phys Oceanogr 23(3):409–424

    Article  Google Scholar 

  • Brisco MG (1975) Preliminary results from the trimoored internal wave experiment (IWEX). J Geophys Res 80(27):3872–3884

    Article  Google Scholar 

  • Bruno M, Alonso JJ, Cózar A, Vidal J, Ruiz-Cañavate A, Echevarría F, Ruiz J (2002) The boiling-water phenomena at Camarinal Sill, the Strait of Gibraltar. Deep-Sea Res II 49:4097–4113

    Article  Google Scholar 

  • Bryden HL, Candela J, Kinder TH (1994) Exchange through the Strait of Gibraltar. Prog Oceanogr 33:201–248

    Article  Google Scholar 

  • Defant A (1961) Physical oceanography. Pergamon, NY

    Google Scholar 

  • Di Sarra A, Pace A, Salusti E (1987) Long internal waves and columnar disturbances in the Strait of Messina. J Geophys Res 92:6495–6500

    Article  Google Scholar 

  • Dunphy M, Lamb KG (2014) Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J Geophys Res 119:523–536. https://doi.org/10.1002/2013JC009293

    Article  Google Scholar 

  • Dushaw BD (2006) Mode-1 internal tides in the western North Atlantic Ocean. Deep-Sea Res 53(3):449–473

    Article  Google Scholar 

  • Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204

    Article  Google Scholar 

  • Frankignoul C, Joyce TM (1979) On the internal wave variability during the internal wave experiment (IWEX). J Geophys Res 84(C2):769–776

    Article  Google Scholar 

  • Garzoli SL, Richardson PL, Rae CMD, Fratantoni DM, Goni GJ, Roubicek AJ (1999) Three Agulhas rings observed during the Benguela Current Experiment. J Geophys Res 104(C9):20971–20985

    Article  Google Scholar 

  • Gerkema T, van Haren H (2007) Internal tides and energy fluxes over Great Meteor Seamount. Ocean Sci 3:441–449. https://doi.org/10.5194/os-3-441-2007

    Article  Google Scholar 

  • Golenko NN (1982) Isotropy of inertial and semidiurnal tide motions in the ocean. Oceanology 22(1):23–31

    Google Scholar 

  • Gordeev RG, Kagan BA, Rivkind VY (1974) Modeling of semidiurnal tides in the global ocean. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 10(7):497–498

    Google Scholar 

  • Griffa A, Marullo S, Santolieri R, Viola A (1986) Preliminary observations of large-amplitude tidal internal waves near the Strait of Messina. Contin Shelf Res 6:677–687

    Article  Google Scholar 

  • Guizien K, Barthdemy E, Inall ME (1999) Internal tide generation at a shelf break by an oblique barotropic tide: observations and analytical modeling. J Geophys Res 104(7):15655–15668

    Article  Google Scholar 

  • Hall RA, Huthnance JM, Williams RG (2011) Internal tides, nonlinear internal wave trains, and mixing in the Faroe-Shetland Channel. J Geophys Res 116:C03008. https://doi.org/10.1029/2010JC006213

    Article  Google Scholar 

  • Hallock ZR, Field RL (2005) Internal-wave energy fluxes on the New Jersey shelf. J Phys Oceanogr 35(1):3–12

    Article  Google Scholar 

  • Hibiya T (1990) Generation mechanism of internal waves by a vertically sheared tidal flow over a sill. J Geophys Res 95:1757–1764. https://doi.org/10.1029/JC095iC02p01757

    Article  Google Scholar 

  • Hopkins TS, Salusti E, Settimi D (1984) Tidal forcing of the water mass interface in the Strait of Messina. J Geophys Res 89(C2):2013–2024

    Article  Google Scholar 

  • Inall ME, Ripperth TP, Sherwin TJ (2000) Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. J Geophys Res 105(4):8687–8705

    Article  Google Scholar 

  • Ivanov YA, Morozov EG (1974) Deformation of internal gravity waves by a flow with a horizontal velocity shear. Oceanology 14(3):457–461

    Google Scholar 

  • Ivanov YA, Morozov EG (1983) Investigations of temperature fluctuations at tidal and inertial periods. In: Atlantic Hydrophysical Polygon-70 (pp 289–299). Amerind Co. Oxonian Press Ltd., New Delhi

    Google Scholar 

  • Jeans DRG, Sherwin TJ (2001) The evolution and energetics of large amplitude nonlinear internal waves on the Portuguese shelf. J Mar Res 59:327–353. https://doi.org/10.1357/002224001762842235

    Article  Google Scholar 

  • Jézéquel N, Mazé R, Pichon A (2002) Interaction of semidiurnal tide with a continental slope in a continuously stratified ocean. Deep-Sea Res 49(4):707–734

    Article  Google Scholar 

  • Kamenkovich VM, Koshlyakov MN, Monin AS (1986) Synoptic Eddies in the Ocean. Springer

    Google Scholar 

  • Käse RH, Clarke RA (1978) High-frequency internal waves in the upper thermocline during GATE. Deep-Sea Res 25(9):815–825

    Article  Google Scholar 

  • Käse RH, Olbers D (1980) Wind-driven inertial waves observed during phase III of GATE. Deep-Sea Res Suppl 26:191–216

    Google Scholar 

  • Largier JL (1994) The internal tide over the shelf inshore of Cape Point Valley South Africa. J Geophys Res 99:10023–10034

    Article  Google Scholar 

  • Longo A, Manzo M, Pierini S (1992) A model for the generation of nonlinear internal tides in the Strait of Gibraltar. Oceanol Acta 15:233–243

    Google Scholar 

  • Lyashenko AF, Sabinin KD (1979) On the spatial structure of the internal tides on the 1970 hydrophysical test range in the Atlantic. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 15(8):595–601

    Google Scholar 

  • Matygin AS, Sabinin KD, Filonov AE (1982) Average spatial spectra of internal tides on the 1970 Atlantic Hydrophysical test range. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 18(2):129–133

    Google Scholar 

  • McCardell G, O’Donnell J, Souza AJ, Palmer MR (2016) Internal tides and tidal cycles of vertical mixing in western Long Island Sound. J Geophys Res 121:1063–1084. https://doi.org/10.1002/2015JC010796

    Article  Google Scholar 

  • Mohn C, Beckmann A (2002) The upper ocean circulation at Great Meteor Seamount. Part I: Structure of density and flow fields. Ocean Dyn 52:179–193. https://doi.org/10.1007/s10236-002-0017-4

    Article  Google Scholar 

  • Morozov EG, Filatova LP (1978) Horizontal coherence of semidiurnal fluctuations of temperature in the Polygon-70 test area. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 14(3):243–246

    Google Scholar 

  • Morozov EG, Nikitin SV (1981) Investigation of the direction of internal waves of tidal period in study area 70. Oceanology 21(2):168–171

    Google Scholar 

  • Morozov EG (1983) Investigation of 9-month temperature and velocity spectra in the Western Atlantic. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 19(10):166–168

    Google Scholar 

  • Morozov EG, Nikitin SV (1984a) Propagation of semidiurnal internal waves in a region with varying bottom topography. Oceanological Res 36:44–49

    Google Scholar 

  • Morozov EG (1988) Spatial characteristics of semidiurnal internal waves in the Mesopolygon study region. In: Hydrophysical investigations within the Mesopolygon Program (pp 144–146). Nauka,Moscow

    Google Scholar 

  • Morozov EG (1995) Semidiurnal internal wave global field. Deep-Sea Res 42(1):135–148

    Article  Google Scholar 

  • Morozov EG, Pelinovsky EN, Talipova TG (1998) Exceedance frequency for internal waves during the Mesopolygon-85 experiment in the Atlantic. Oceanology 38(4):521–527

    Google Scholar 

  • Morozov EG, Trulsen K, Velarde MG, Vlasenko VI (2002) Internal tides in the Strait of Gibraltar. J Phys Oceanogr 32:3193–3206

    Article  Google Scholar 

  • Müller P, Olbers DJ, Willebrand J (1978) The IWEX spectrum. J Geophys Res 83(C1):479–500

    Article  Google Scholar 

  • New AL, Pingree RD (1990a) Large amplitude internal soliton packets in the central Bay of Biscay. Deep-Sea Res 37:513–524

    Article  Google Scholar 

  • New AL, Pingree RD (1990b) Evidence for internal tidal mixing near the shelf break in the Bay of Biscay. Deep-Sea Res 37(12):1783–1803

    Article  Google Scholar 

  • Oceanography from the Space Shuttle (1996) NASA http://geoinfo.amu.edu.pl/wpk/ocean/oss_contents.html. Last accessed in October 2017

  • Parks TW, Burrus CS (1987) Digital filter design. John Wiley & Sons. Chapter 7, section 7.3.3

    Google Scholar 

  • Pereira AF, Castro BM (2007) Internal tides in the Southwestern Atlantic off Brazil: observations and numerical modeling. J Phys Oceanogr 37(6):1512–1526

    Article  Google Scholar 

  • Pereira AF, Castro BM, Calado L, da Silveira ICA (2007) Numerical simulation of M2 internal tides in the South Brazil Bight and their interaction with the Brazil Current. J Geophys Res 112:C04009. https://doi.org/10.1029/2006JC003673

  • Perkins H, Sherwin TJ, Hopkins TS (1994) Amplification of tidal currents by overflow on the Iceland-Faeroe Ridge. J Phys Oceanogr 24(4):721–735

    Article  Google Scholar 

  • Pichon A, Mazé R (1990) Internal tides over a shelf break: analytical model and observations. J Phys Oceanogr 20(5):657–671

    Article  Google Scholar 

  • Pingree RD, New AL (1989) Downward propagation of internal tidal energy into the Bay of Biscay. Deep-Sea Res 36:735–758

    Article  Google Scholar 

  • Pingree RD, New AL (1991) Abyssal penetration and bottom reflection of internal tidal energy in the Bay of Biscay. J Phys Oceanogr 21:28–39

    Article  Google Scholar 

  • Pingree RD, New AL (1995) Structure, seasonal development and sunglint spatial coherence of the internal tide on the Celtic and Armorican shelves and in the Bay of Biscay. Deep-Sea Res 42(2):245–284

    Article  Google Scholar 

  • Rippeth TP, Inall ME (2002) Observations of the internal tide and associated mixing across the Malin Shelf. J Geophys Res 107(C4):3028. https://doi.org/10.1029/2000JC000761

    Article  Google Scholar 

  • Sabinin KD, Shulepov VA (1978) Spatial characteristics of semidiurnal internal waves in the Polygon-70 hydrophysical test area in the Atlantic. Oceanology 18(1):253–264

    Google Scholar 

  • Sabinin KD, Nazarov AA, Serebryaniy AN (1990) Short-period internal waves and currents in the ocean. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 26(8):621–625

    Google Scholar 

  • Sandoval FJ, Weatherly GL (2001) Evolution of the deep western boundary current of Antarctic bottom water in the Brazil Basin. J Phys Oceanogr 31(6):1440–1460

    Article  Google Scholar 

  • Sandström H, Elliott JA (1984) Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. J Geophys Res 89(C4):6415–6426. https://doi.org/10.1029/JC089iC04p06415

    Article  Google Scholar 

  • Sandström H, Oakey NS (1995) Dissipation in internal tides and solitary waves. J Phys Oceanogr 25(4):604–614

    Article  Google Scholar 

  • Sandström H, Elliott JA (2011) Production, transformation, and dissipation of energy in internal tides near the continental shelf edge. J Geophys Res 116:C04004. https://doi.org/10.1029/2010JC006296

    Article  Google Scholar 

  • Sapia A, Salusti E (1987) Observation of nonlinear internal solitary wave trains at the northern and southern mouths of the Strait of Messina. Deep-Sea Res 34:1081–1092

    Article  Google Scholar 

  • Seim KS, Fer I (2011) Mixing in the stratified interface of the Faroe Bank Channel overflow: the role of transverse circulation and internal waves. J Geophys Res 116:C07022. https://doi.org/10.1029/2010JC006805

    Article  Google Scholar 

  • Sherwin T (1988) Analysis of an internal tide observed on the Marlin Shelf north of Ireland. J Phys Oceanogr 18:1035–1050

    Article  Google Scholar 

  • Sherwin TJ, Taylor NK (1990) Numerical investigations of linear internal tide generation in the Rockall Trough. Deep-Sea Res 37(10):1595–1618

    Article  Google Scholar 

  • Sherwin TJ (1991) Evidence of a deep internal tide in the Faeroe-Shetland channel. In: Parker BB (ed) Tidal hydrodynamics (pp 469–488). Wiley, NY

    Google Scholar 

  • Shroyer EL, Moum JN, Nash JD (2011) Nonlinear internal waves over New Jersey’s continental shelf. J Geophys Res 116:C03022. https://doi.org/10.1029/2010JC006332

    Article  Google Scholar 

  • Thompson RORY (1979) Coherence significance levels. J Atmospheric Sci 36(10):2020–2021

    Article  Google Scholar 

  • van Haren H (2005) Details of stratification in a sloping bottom boundary layer of Great Meteor Seamount. Geophys Res Lett 32:L07606. https://doi.org/10.1029/2004GL022298

    Google Scholar 

  • van Haren H (2007a) Inertial and tidal shear variability above Reykjanes Ridge. Deep-Sea Res 54(6):856–870

    Article  Google Scholar 

  • van Haren H (2007b) Unpredictability of internal M2. Ocean Sci 3:337–344. https://doi.org/10.5194/os-3-337-2007

    Article  Google Scholar 

  • van Haren H, Gostiaux L, Morozov E, Tarakanov R (2014) Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophys Res Lett 41:8445–8451

    Article  Google Scholar 

  • Vlasenko VI (1992) Nonlinear model for the generation of baroclinic tides over extensive inhomogeneities of bottom topography. Phys Oceanogr (Morskoy gidrofizicheskiy zhurnal) 3:417–424

    Google Scholar 

  • Vlasenko VI, Golenko NN, Paka VT, Sabinin KD, Chapman R (1997) Study of the dynamics of baroclinic tides in the region of the shelf edge. Oceanology 37(5):599–609

    Google Scholar 

  • Vlasenko VI, Alpers W (2005) Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. J Geophys Res 110:C02019. https://doi.org/10.1029/2004JC002467

    Google Scholar 

  • Vlasenko V, Stashchuk N, Palmer MR, Inall ME (2013) Generation of baroclinic tides over an isolated underwater bank. J Geophys Res 118(C9):4395–4408. https://doi.org/10.1002/jgrc.20304

    Article  Google Scholar 

  • Vlasenko V, Stashchuk N, Inall ME, Hopkins JE (2014) Tidal energy conversion in a global hot spot: on the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. J Geophys Res 119:3249–3265. doi:10.1002/2013JC009708

    Google Scholar 

  • Vlasenko V, Stashchuk N (2015) Internal tides near the Celtic Sea shelf break: a new look at a well known problem. Deep-Sea Res 103:24–36

    Article  Google Scholar 

  • Wang D-P (1993) The Strait of Gibraltar model: Internal tide, diurnal inequality and fortnightly modulation. Deep Sea Res 40:1187–1203

    Article  Google Scholar 

  • Wang D-P, Oey L-Y, Ezer T, Hamilton P (2003) Near-surface currents in DeSoto Canyon (1997–99): comparison of current meters, satellite observation, and model simulation. J Phys Oceanogr 23(1):313–326

    Article  Google Scholar 

  • Wang J, Ingram RG, Mysak LA (1991) Variability of internal tides in the Laurentian Channel. J Geophys Res 96:16859–16875. https://doi.org/10.1029/91JC01580

    Article  Google Scholar 

  • Watson G, Robinson IS (1990) A study of internal wave propagation in the Strait of Gibraltar using shore-based marine radar images. J Phys Oceanogr 20(3):374–395

    Article  Google Scholar 

  • Watson G (1994) Internal waves in a stratified shear flow: the Strait of Gibraltar. J Phys Oceanogr 24(2):509–517

    Article  Google Scholar 

  • Weatherly G, Kim YY, Kontar E (2000) Eulerian measurements of the Deep Western Boundary Current of North Atlantic Deep Water at 18°S. J Phys Oceanogr 30:971–986

    Article  Google Scholar 

  • Wesson JC, Gregg MC (1988) Turbulent dissipation in the Strait of Gibraltar and associated mixing. In: Nihoul JCJ, Jamart BM (eds) Small scale turbulence and mixing in the ocean. Proceedings 19th International Liege Colloquium Ocean Hydrodynamics (pp 201–222). Elsivier, Amsterdam

    Google Scholar 

  • WOD13 World Ocean Database (2013) Geographically Sorted Data. https://www.nodc.noaa.gov/OC5/WOD/datageo.html. Last updated October 26, 2013; last accessed in October 2017

  • Xie XH, Cuypers Y, Bouruet-Aubertot P, Pichon A, Lourenço A, Ferron B (2015) Generation and propagation of internal tides and solitary waves at the shelf edge of the Bay of Biscay. J Geophys Res 120:6603–6621. https://doi.org/10.1002/2015JC010827

    Article  Google Scholar 

  • Xing J, Davies AM (1996) Processes influencing the internal tide, its higher harmonics, and tidally induced mixing on the Malin-Hebrides Shelf. Prog Oceanog 38:155–204

    Article  Google Scholar 

  • Zenk W, Siedler G, Lenz B, Hogg NG (1999) Antarctic bottom water flow through the hunter channel. J Phys Oceanogr 29(11):2785–2801

    Article  Google Scholar 

  • Zhang L, Buijsman MC, Comino E, Swinney HL (2017) Internal wave generation by tidal flow over periodically and randomly distributed seamounts. J Geophys Res 122:5073–5084. https://doi.org/10.1002/2017JC012884

    Google Scholar 

  • Ziegenbein J (1969) Short internal waves in the Strait of Gibraltar. Deep-Sea Res 16(5):479–488

    Google Scholar 

  • Ziegenbein J (1970) Spatial observations of short internal waves in the Strait of Gibraltar. Deep-Sea Res 17(5):867–876

    Google Scholar 

  • Zilberman NV, Becker JM, Merrifield MA, Carter GS (2009) Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J Phys Oceanogr 39(10):2635–2651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene G. Morozov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morozov, E.G. (2018). Observations of Internal Tides in the Atlantic Ocean. In: Oceanic Internal Tides: Observations, Analysis and Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-73159-9_2

Download citation

Publish with us

Policies and ethics