Advertisement

Observations of Internal Tides in the Atlantic Ocean

  • Eugene G. MorozovEmail author
Chapter

Abstract

This chapter describes the measurements of internal tides in the Atlantic Ocean and in the Mediterranean Sea together with modeling of the generation and propagation of internal tides in some important regions of the Atlantic Ocean. The generation of internal tides is associated with the interaction of the currents of the barotropic tide with the slopes of the bottom topography. One of the most important ideas presented here is the strong generation of internal tides over submarine ridges. The generation and propagation of internal tides in the Strait of Gibraltar where the strongest internal tides on the globe exist are described. The generation of internal tides over the Mid-Atlantic Ridge in the South Atlantic is demonstrated on the basis of measurements in several regions near the ridge. The measurements reveal strong internal tides in Biscay Bay. Weaker internal tides are found in the Sargasso Sea. Measurements of internal tides on mooring clusters confirm the well known fact that internal tides are generated over the bottom slopes.

References

  1. Alonso del Rosario JJ, Bruno Mejías BM, Vazquez-Lopez-Escobar A (2003) The influence of tidal hydrodynamic conditions on the generation of lee waves at the main sill of the Strait of Gibraltar. Deep-Sea Res 50:1005–1021CrossRefGoogle Scholar
  2. Alpers W, Salusti E (1983) Scylla and Charybdis observed from space. J Geophys Res 88(3):1800–1808CrossRefGoogle Scholar
  3. Androsov AA, Voltzinger NE, Kagan BA, Salusti ES (1993) Residual tidal currents in the Strait of Messina. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 29(4):522–531Google Scholar
  4. Androsov AA, Kagan BA, Romanenkov DA, Voltzinger NE (2002) Numerical modeling of barotropic tidal dynamics in the Strait of Messina. Advances Water Resources. 25:401–415CrossRefGoogle Scholar
  5. Ansong JK, Arbic BK, Buijsman MC, Richman JG, Shriver JF, Wallcraft AJ (2015) Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J Geophys Res 120:6057–6071.  https://doi.org/10.1002/2015JC010998 CrossRefGoogle Scholar
  6. Apel JR, Byrne HM, Proni JR, Charnell RL (1975) Observations of oceanic internal and surface waves from the earth resources technology satellite. J Geophys Res 80(6):865–881CrossRefGoogle Scholar
  7. Armi L, Farmer DM (1988) The flow of Mediterranean water through the Strait of Gibraltar. Farmer DM, Armi L (1988) The flow of Atlantic water through the Strait of Gibraltar. Prog Oceanogr 21:1–105CrossRefGoogle Scholar
  8. Atlantic Hydrophysical Polygon-70 (1983) Amerind Co. Oxonian Press, New DelhiGoogle Scholar
  9. Badulin SI, Shrira VI, Tsimring LS (1985) The trapping and vertical focusing of internal waves in a pycnocline due to the horizontal inhomogeneities of density and currents. J Fluid Mech 158:199–218CrossRefGoogle Scholar
  10. Baines PG (1973) The generation of internal tides by flat-bump topography. Deep-Sea Res 20:179–205Google Scholar
  11. Baines PG (1982) On internal tide generation models. Deep-Sea Res 29(3):307–338CrossRefGoogle Scholar
  12. Baines PG (2007) Internal tide generation by seamounts. Deep Sea Res 54(9):1486–1508. doi:10.1016 j.dsr.2007.05.009Google Scholar
  13. Barber NF (1963) The directional resolving power of an array of wave detectors. In: Ocean wave spectra. NY, Engelwood Cliffs, Prentice Hall, pp 137–150Google Scholar
  14. Bignami F, Salusti E (1990) Tidal currents and transient phenomena in the Strait of Messina: a review. In: Pratt LJ. (ed) The physical oceanography of sea straits, pp 95–124. Kluwer Academic, The NetherlandsGoogle Scholar
  15. Bockel M (1962) Travaux Oceanographiques de l’ “Origny” a Gibraltar. Cah Oceanograph 14:325–329Google Scholar
  16. Bolshakov VN, Sabinin KD (1983) Mean characteristics of semidiurnal tidal currents in Polygon-70 and their variability. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 19(1):51–56Google Scholar
  17. Bondur VG (1995) The principles of monitoring the Earth from space for the need of the ecology and natural resources. Izv Vuzov Geodesy Aerophotography 12:14–38Google Scholar
  18. Bondur V, Keeler R, Gibson C (2005) Optical satellite imagery detection of internal wave effects from a submerged turbulent outfall in the stratified ocean. Geophys Res Lett 32:L12610.  https://doi.org/10.1029/2005GL022390 Google Scholar
  19. Bondur VG, Morozov EG, Belchansky GI, Grebenyuk YV (2006a) Radar survey and numerical modeling of internal tides in the shelf region, Investigation of the Earth from Space, pp 51–63Google Scholar
  20. Bondur VG, Morozov EG, Grebenyuk YV (2006b) Radar observations and numerical modeling of internal tides in the coastal zone of the North Atlantic region. Investigation of the Ocean from Space. IKI, Moscow, pp 21–29Google Scholar
  21. Boyce FM (1975) Internal waves in the Strait of Gibraltar. Deep Sea Res 22:597–610Google Scholar
  22. Brandt P, Alpers W, Backhaus JO (1996) Study of the generation and propagation of internal waves in the Strait of Gibraltar using a numerical model and synthetic aperture radar images of the European ERS 1 satellite. J Geophys Res 101:14,237–14,252Google Scholar
  23. Brandt P, Rubino A, Alpers W, Backhaus JO (1997) Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar Images from the ERS 1/2 Satellites. J Phys Oceanogr 27(5):648–663CrossRefGoogle Scholar
  24. Brandt P, Rubino A, Quadfasel D, Alpers W, Sellschopp J, Fiekas H-V (1999) Evidence for the influence of Atlantic-Ionian stream fluctuations on the tidally induced internal dynamics in the Strait of Messina. J Phys Oceanogr 29(5):1071–1080CrossRefGoogle Scholar
  25. Brickman D, Loder JW (1993) Energetics of the internal tide on northern Georges Bank. J Phys Oceanogr 23(3):409–424CrossRefGoogle Scholar
  26. Brisco MG (1975) Preliminary results from the trimoored internal wave experiment (IWEX). J Geophys Res 80(27):3872–3884CrossRefGoogle Scholar
  27. Bruno M, Alonso JJ, Cózar A, Vidal J, Ruiz-Cañavate A, Echevarría F, Ruiz J (2002) The boiling-water phenomena at Camarinal Sill, the Strait of Gibraltar. Deep-Sea Res II 49:4097–4113CrossRefGoogle Scholar
  28. Bryden HL, Candela J, Kinder TH (1994) Exchange through the Strait of Gibraltar. Prog Oceanogr 33:201–248CrossRefGoogle Scholar
  29. Defant A (1961) Physical oceanography. Pergamon, NYGoogle Scholar
  30. Di Sarra A, Pace A, Salusti E (1987) Long internal waves and columnar disturbances in the Strait of Messina. J Geophys Res 92:6495–6500CrossRefGoogle Scholar
  31. Dunphy M, Lamb KG (2014) Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J Geophys Res 119:523–536.  https://doi.org/10.1002/2013JC009293 CrossRefGoogle Scholar
  32. Dushaw BD (2006) Mode-1 internal tides in the western North Atlantic Ocean. Deep-Sea Res 53(3):449–473CrossRefGoogle Scholar
  33. Egbert GD, Erofeeva S (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19:183–204CrossRefGoogle Scholar
  34. Frankignoul C, Joyce TM (1979) On the internal wave variability during the internal wave experiment (IWEX). J Geophys Res 84(C2):769–776CrossRefGoogle Scholar
  35. Garzoli SL, Richardson PL, Rae CMD, Fratantoni DM, Goni GJ, Roubicek AJ (1999) Three Agulhas rings observed during the Benguela Current Experiment. J Geophys Res 104(C9):20971–20985CrossRefGoogle Scholar
  36. Gerkema T, van Haren H (2007) Internal tides and energy fluxes over Great Meteor Seamount. Ocean Sci 3:441–449.  https://doi.org/10.5194/os-3-441-2007 CrossRefGoogle Scholar
  37. Golenko NN (1982) Isotropy of inertial and semidiurnal tide motions in the ocean. Oceanology 22(1):23–31Google Scholar
  38. Gordeev RG, Kagan BA, Rivkind VY (1974) Modeling of semidiurnal tides in the global ocean. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 10(7):497–498Google Scholar
  39. Griffa A, Marullo S, Santolieri R, Viola A (1986) Preliminary observations of large-amplitude tidal internal waves near the Strait of Messina. Contin Shelf Res 6:677–687CrossRefGoogle Scholar
  40. Guizien K, Barthdemy E, Inall ME (1999) Internal tide generation at a shelf break by an oblique barotropic tide: observations and analytical modeling. J Geophys Res 104(7):15655–15668CrossRefGoogle Scholar
  41. Hall RA, Huthnance JM, Williams RG (2011) Internal tides, nonlinear internal wave trains, and mixing in the Faroe-Shetland Channel. J Geophys Res 116:C03008.  https://doi.org/10.1029/2010JC006213 CrossRefGoogle Scholar
  42. Hallock ZR, Field RL (2005) Internal-wave energy fluxes on the New Jersey shelf. J Phys Oceanogr 35(1):3–12CrossRefGoogle Scholar
  43. Hibiya T (1990) Generation mechanism of internal waves by a vertically sheared tidal flow over a sill. J Geophys Res 95:1757–1764.  https://doi.org/10.1029/JC095iC02p01757 CrossRefGoogle Scholar
  44. Hopkins TS, Salusti E, Settimi D (1984) Tidal forcing of the water mass interface in the Strait of Messina. J Geophys Res 89(C2):2013–2024CrossRefGoogle Scholar
  45. Inall ME, Ripperth TP, Sherwin TJ (2000) Impact of nonlinear waves on the dissipation of internal tidal energy at a shelf break. J Geophys Res 105(4):8687–8705CrossRefGoogle Scholar
  46. Ivanov YA, Morozov EG (1974) Deformation of internal gravity waves by a flow with a horizontal velocity shear. Oceanology 14(3):457–461Google Scholar
  47. Ivanov YA, Morozov EG (1983) Investigations of temperature fluctuations at tidal and inertial periods. In: Atlantic Hydrophysical Polygon-70 (pp 289–299). Amerind Co. Oxonian Press Ltd., New DelhiGoogle Scholar
  48. Jeans DRG, Sherwin TJ (2001) The evolution and energetics of large amplitude nonlinear internal waves on the Portuguese shelf. J Mar Res 59:327–353.  https://doi.org/10.1357/002224001762842235 CrossRefGoogle Scholar
  49. Jézéquel N, Mazé R, Pichon A (2002) Interaction of semidiurnal tide with a continental slope in a continuously stratified ocean. Deep-Sea Res 49(4):707–734CrossRefGoogle Scholar
  50. Kamenkovich VM, Koshlyakov MN, Monin AS (1986) Synoptic Eddies in the Ocean. SpringerGoogle Scholar
  51. Käse RH, Clarke RA (1978) High-frequency internal waves in the upper thermocline during GATE. Deep-Sea Res 25(9):815–825CrossRefGoogle Scholar
  52. Käse RH, Olbers D (1980) Wind-driven inertial waves observed during phase III of GATE. Deep-Sea Res Suppl 26:191–216Google Scholar
  53. Largier JL (1994) The internal tide over the shelf inshore of Cape Point Valley South Africa. J Geophys Res 99:10023–10034CrossRefGoogle Scholar
  54. Longo A, Manzo M, Pierini S (1992) A model for the generation of nonlinear internal tides in the Strait of Gibraltar. Oceanol Acta 15:233–243Google Scholar
  55. Lyashenko AF, Sabinin KD (1979) On the spatial structure of the internal tides on the 1970 hydrophysical test range in the Atlantic. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 15(8):595–601Google Scholar
  56. Matygin AS, Sabinin KD, Filonov AE (1982) Average spatial spectra of internal tides on the 1970 Atlantic Hydrophysical test range. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 18(2):129–133Google Scholar
  57. McCardell G, O’Donnell J, Souza AJ, Palmer MR (2016) Internal tides and tidal cycles of vertical mixing in western Long Island Sound. J Geophys Res 121:1063–1084.  https://doi.org/10.1002/2015JC010796 CrossRefGoogle Scholar
  58. Mohn C, Beckmann A (2002) The upper ocean circulation at Great Meteor Seamount. Part I: Structure of density and flow fields. Ocean Dyn 52:179–193.  https://doi.org/10.1007/s10236-002-0017-4 CrossRefGoogle Scholar
  59. Morozov EG, Filatova LP (1978) Horizontal coherence of semidiurnal fluctuations of temperature in the Polygon-70 test area. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 14(3):243–246Google Scholar
  60. Morozov EG, Nikitin SV (1981) Investigation of the direction of internal waves of tidal period in study area 70. Oceanology 21(2):168–171Google Scholar
  61. Morozov EG (1983) Investigation of 9-month temperature and velocity spectra in the Western Atlantic. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 19(10):166–168Google Scholar
  62. Morozov EG, Nikitin SV (1984a) Propagation of semidiurnal internal waves in a region with varying bottom topography. Oceanological Res 36:44–49Google Scholar
  63. Morozov EG (1988) Spatial characteristics of semidiurnal internal waves in the Mesopolygon study region. In: Hydrophysical investigations within the Mesopolygon Program (pp 144–146). Nauka,MoscowGoogle Scholar
  64. Morozov EG (1995) Semidiurnal internal wave global field. Deep-Sea Res 42(1):135–148CrossRefGoogle Scholar
  65. Morozov EG, Pelinovsky EN, Talipova TG (1998) Exceedance frequency for internal waves during the Mesopolygon-85 experiment in the Atlantic. Oceanology 38(4):521–527Google Scholar
  66. Morozov EG, Trulsen K, Velarde MG, Vlasenko VI (2002) Internal tides in the Strait of Gibraltar. J Phys Oceanogr 32:3193–3206CrossRefGoogle Scholar
  67. Müller P, Olbers DJ, Willebrand J (1978) The IWEX spectrum. J Geophys Res 83(C1):479–500CrossRefGoogle Scholar
  68. New AL, Pingree RD (1990a) Large amplitude internal soliton packets in the central Bay of Biscay. Deep-Sea Res 37:513–524CrossRefGoogle Scholar
  69. New AL, Pingree RD (1990b) Evidence for internal tidal mixing near the shelf break in the Bay of Biscay. Deep-Sea Res 37(12):1783–1803CrossRefGoogle Scholar
  70. Oceanography from the Space Shuttle (1996) NASA http://geoinfo.amu.edu.pl/wpk/ocean/oss_contents.html. Last accessed in October 2017
  71. Parks TW, Burrus CS (1987) Digital filter design. John Wiley & Sons. Chapter 7, section 7.3.3Google Scholar
  72. Pereira AF, Castro BM (2007) Internal tides in the Southwestern Atlantic off Brazil: observations and numerical modeling. J Phys Oceanogr 37(6):1512–1526CrossRefGoogle Scholar
  73. Pereira AF, Castro BM, Calado L, da Silveira ICA (2007) Numerical simulation of M2 internal tides in the South Brazil Bight and their interaction with the Brazil Current. J Geophys Res 112:C04009.  https://doi.org/10.1029/2006JC003673
  74. Perkins H, Sherwin TJ, Hopkins TS (1994) Amplification of tidal currents by overflow on the Iceland-Faeroe Ridge. J Phys Oceanogr 24(4):721–735CrossRefGoogle Scholar
  75. Pichon A, Mazé R (1990) Internal tides over a shelf break: analytical model and observations. J Phys Oceanogr 20(5):657–671CrossRefGoogle Scholar
  76. Pingree RD, New AL (1989) Downward propagation of internal tidal energy into the Bay of Biscay. Deep-Sea Res 36:735–758CrossRefGoogle Scholar
  77. Pingree RD, New AL (1991) Abyssal penetration and bottom reflection of internal tidal energy in the Bay of Biscay. J Phys Oceanogr 21:28–39CrossRefGoogle Scholar
  78. Pingree RD, New AL (1995) Structure, seasonal development and sunglint spatial coherence of the internal tide on the Celtic and Armorican shelves and in the Bay of Biscay. Deep-Sea Res 42(2):245–284CrossRefGoogle Scholar
  79. Rippeth TP, Inall ME (2002) Observations of the internal tide and associated mixing across the Malin Shelf. J Geophys Res 107(C4):3028.  https://doi.org/10.1029/2000JC000761 CrossRefGoogle Scholar
  80. Sabinin KD, Shulepov VA (1978) Spatial characteristics of semidiurnal internal waves in the Polygon-70 hydrophysical test area in the Atlantic. Oceanology 18(1):253–264Google Scholar
  81. Sabinin KD, Nazarov AA, Serebryaniy AN (1990) Short-period internal waves and currents in the ocean. Izv Acad Sci USSR Ser Atmosph Oceanic Phys 26(8):621–625Google Scholar
  82. Sandoval FJ, Weatherly GL (2001) Evolution of the deep western boundary current of Antarctic bottom water in the Brazil Basin. J Phys Oceanogr 31(6):1440–1460CrossRefGoogle Scholar
  83. Sandström H, Elliott JA (1984) Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. J Geophys Res 89(C4):6415–6426.  https://doi.org/10.1029/JC089iC04p06415 CrossRefGoogle Scholar
  84. Sandström H, Oakey NS (1995) Dissipation in internal tides and solitary waves. J Phys Oceanogr 25(4):604–614CrossRefGoogle Scholar
  85. Sandström H, Elliott JA (2011) Production, transformation, and dissipation of energy in internal tides near the continental shelf edge. J Geophys Res 116:C04004.  https://doi.org/10.1029/2010JC006296 CrossRefGoogle Scholar
  86. Sapia A, Salusti E (1987) Observation of nonlinear internal solitary wave trains at the northern and southern mouths of the Strait of Messina. Deep-Sea Res 34:1081–1092CrossRefGoogle Scholar
  87. Seim KS, Fer I (2011) Mixing in the stratified interface of the Faroe Bank Channel overflow: the role of transverse circulation and internal waves. J Geophys Res 116:C07022.  https://doi.org/10.1029/2010JC006805 CrossRefGoogle Scholar
  88. Sherwin T (1988) Analysis of an internal tide observed on the Marlin Shelf north of Ireland. J Phys Oceanogr 18:1035–1050CrossRefGoogle Scholar
  89. Sherwin TJ, Taylor NK (1990) Numerical investigations of linear internal tide generation in the Rockall Trough. Deep-Sea Res 37(10):1595–1618CrossRefGoogle Scholar
  90. Sherwin TJ (1991) Evidence of a deep internal tide in the Faeroe-Shetland channel. In: Parker BB (ed) Tidal hydrodynamics (pp 469–488). Wiley, NYGoogle Scholar
  91. Shroyer EL, Moum JN, Nash JD (2011) Nonlinear internal waves over New Jersey’s continental shelf. J Geophys Res 116:C03022.  https://doi.org/10.1029/2010JC006332 CrossRefGoogle Scholar
  92. Thompson RORY (1979) Coherence significance levels. J Atmospheric Sci 36(10):2020–2021CrossRefGoogle Scholar
  93. van Haren H (2005) Details of stratification in a sloping bottom boundary layer of Great Meteor Seamount. Geophys Res Lett 32:L07606.  https://doi.org/10.1029/2004GL022298 Google Scholar
  94. van Haren H (2007a) Inertial and tidal shear variability above Reykjanes Ridge. Deep-Sea Res 54(6):856–870CrossRefGoogle Scholar
  95. van Haren H (2007b) Unpredictability of internal M2. Ocean Sci 3:337–344.  https://doi.org/10.5194/os-3-337-2007 CrossRefGoogle Scholar
  96. van Haren H, Gostiaux L, Morozov E, Tarakanov R (2014) Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophys Res Lett 41:8445–8451CrossRefGoogle Scholar
  97. Vlasenko VI (1992) Nonlinear model for the generation of baroclinic tides over extensive inhomogeneities of bottom topography. Phys Oceanogr (Morskoy gidrofizicheskiy zhurnal) 3:417–424Google Scholar
  98. Vlasenko VI, Golenko NN, Paka VT, Sabinin KD, Chapman R (1997) Study of the dynamics of baroclinic tides in the region of the shelf edge. Oceanology 37(5):599–609Google Scholar
  99. Vlasenko VI, Alpers W (2005) Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank. J Geophys Res 110:C02019.  https://doi.org/10.1029/2004JC002467 Google Scholar
  100. Vlasenko V, Stashchuk N, Palmer MR, Inall ME (2013) Generation of baroclinic tides over an isolated underwater bank. J Geophys Res 118(C9):4395–4408.  https://doi.org/10.1002/jgrc.20304 CrossRefGoogle Scholar
  101. Vlasenko V, Stashchuk N, Inall ME, Hopkins JE (2014) Tidal energy conversion in a global hot spot: on the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. J Geophys Res 119:3249–3265. doi:10.1002/2013JC009708Google Scholar
  102. Vlasenko V, Stashchuk N (2015) Internal tides near the Celtic Sea shelf break: a new look at a well known problem. Deep-Sea Res 103:24–36CrossRefGoogle Scholar
  103. Wang D-P (1993) The Strait of Gibraltar model: Internal tide, diurnal inequality and fortnightly modulation. Deep Sea Res 40:1187–1203CrossRefGoogle Scholar
  104. Wang D-P, Oey L-Y, Ezer T, Hamilton P (2003) Near-surface currents in DeSoto Canyon (1997–99): comparison of current meters, satellite observation, and model simulation. J Phys Oceanogr 23(1):313–326CrossRefGoogle Scholar
  105. Wang J, Ingram RG, Mysak LA (1991) Variability of internal tides in the Laurentian Channel. J Geophys Res 96:16859–16875.  https://doi.org/10.1029/91JC01580 CrossRefGoogle Scholar
  106. Watson G, Robinson IS (1990) A study of internal wave propagation in the Strait of Gibraltar using shore-based marine radar images. J Phys Oceanogr 20(3):374–395CrossRefGoogle Scholar
  107. Watson G (1994) Internal waves in a stratified shear flow: the Strait of Gibraltar. J Phys Oceanogr 24(2):509–517CrossRefGoogle Scholar
  108. Weatherly G, Kim YY, Kontar E (2000) Eulerian measurements of the Deep Western Boundary Current of North Atlantic Deep Water at 18°S. J Phys Oceanogr 30:971–986CrossRefGoogle Scholar
  109. Wesson JC, Gregg MC (1988) Turbulent dissipation in the Strait of Gibraltar and associated mixing. In: Nihoul JCJ, Jamart BM (eds) Small scale turbulence and mixing in the ocean. Proceedings 19th International Liege Colloquium Ocean Hydrodynamics (pp 201–222). Elsivier, AmsterdamGoogle Scholar
  110. WOD13 World Ocean Database (2013) Geographically Sorted Data. https://www.nodc.noaa.gov/OC5/WOD/datageo.html. Last updated October 26, 2013; last accessed in October 2017
  111. Xie XH, Cuypers Y, Bouruet-Aubertot P, Pichon A, Lourenço A, Ferron B (2015) Generation and propagation of internal tides and solitary waves at the shelf edge of the Bay of Biscay. J Geophys Res 120:6603–6621.  https://doi.org/10.1002/2015JC010827 CrossRefGoogle Scholar
  112. Xing J, Davies AM (1996) Processes influencing the internal tide, its higher harmonics, and tidally induced mixing on the Malin-Hebrides Shelf. Prog Oceanog 38:155–204CrossRefGoogle Scholar
  113. Zenk W, Siedler G, Lenz B, Hogg NG (1999) Antarctic bottom water flow through the hunter channel. J Phys Oceanogr 29(11):2785–2801CrossRefGoogle Scholar
  114. Zhang L, Buijsman MC, Comino E, Swinney HL (2017) Internal wave generation by tidal flow over periodically and randomly distributed seamounts. J Geophys Res 122:5073–5084.  https://doi.org/10.1002/2017JC012884 Google Scholar
  115. Ziegenbein J (1969) Short internal waves in the Strait of Gibraltar. Deep-Sea Res 16(5):479–488Google Scholar
  116. Ziegenbein J (1970) Spatial observations of short internal waves in the Strait of Gibraltar. Deep-Sea Res 17(5):867–876Google Scholar
  117. Zilberman NV, Becker JM, Merrifield MA, Carter GS (2009) Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J Phys Oceanogr 39(10):2635–2651CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Physical DepartmentShirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations