Skip to main content

Bone Health Laboratory Assessments

  • Chapter
  • First Online:
A Practical Approach to Adolescent Bone Health
  • 456 Accesses

Abstract

Ensuring optimal bone accrual and assessing bone health measures when concerns arise are important aspects of adolescent health care. This chapter reviews laboratory assessments which may be considered, including available normative data, which laboratory assessments are most useful in the initial evaluation of common disorders and concerns, and when a referral to an endocrinologist or other bone specialist should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMeglio LA, Imel EA. Calcium and phosphate: hormonal regulation and metabolism. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego: Academic Press; 2014. p. 261–82.

    Chapter  Google Scholar 

  2. Goltzman D. Approach to hypercalcemia. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext. MDText.com: South Dartmouth; 2000.

    Google Scholar 

  3. Sharratt CL, Gilbert CJ, Cornes MC, Ford C, Gama R. EDTA sample contamination is common and often undetected, putting patients at unnecessary risk of harm. Int J Clin Pract. 2009;63(8):1259–62.

    Article  CAS  PubMed  Google Scholar 

  4. Richmond W, Colgan G, Simon S, Stuart-Hilgenfeld M, Wilson N, Alon US. Random urine calcium/osmolality in the assessment of calciuria in children with decreased muscle mass. Clin Nephrol. 2005;64(4):264–70.

    Article  CAS  PubMed  Google Scholar 

  5. Ghazali S, Barratt TM. Urinary excretion of calcium and magnesium in children. Arch Dis Child. 1974;49(2):97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones AN, Shafer MM, Keuler NS, Crone EM, Hansen KE. Fasting and postprandial spot urine calcium-to-creatinine ratios do not detect hypercalciuria. Osteoporos Int. 2012;23(2):553–62.

    Article  CAS  PubMed  Google Scholar 

  7. Metz MP. Determining urinary calcium/creatinine cut-offs for the paediatric population using published data. Ann Clin Biochem. 2006;43(Pt 5):398–401.

    Article  CAS  PubMed  Google Scholar 

  8. Kiessling SG, Goebel J, Somers MJG. Pediatric nephrology in the ICU. Berlin: Springer; 2009.

    Book  Google Scholar 

  9. Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012;27(11):2039–48.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shaw N, Hogler W. Biochemical markers of bone metabolism. In: Glorieux FH, Pettifor JM, Juppner H, editors. Pediatric bone. 2nd ed. Amsterdam: Elsevier/Academic Press; 2012. p. 361–81.

    Chapter  Google Scholar 

  11. Manghat P, Sodi R, Swaminathan R. Phosphate homeostasis and disorders. Ann Clin Biochem. 2014;51(Pt 6):631–56.

    Article  CAS  PubMed  Google Scholar 

  12. Payne RB. Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem. 1998;35(Pt 2):201–6.

    Article  CAS  PubMed  Google Scholar 

  13. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1–46.

    Article  PubMed  Google Scholar 

  14. Brown EM, Chen CJ. Calcium, magnesium and the control of PTH secretion. Bone Miner. 1989;5(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  15. Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257–72.

    Article  CAS  PubMed  Google Scholar 

  16. Ayuk J, Gittoes NJ. How should hypomagnesaemia be investigated and treated? Clin Endocrinol. 2011;75(6):743–6.

    Article  CAS  Google Scholar 

  17. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  PubMed  Google Scholar 

  18. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  PubMed  Google Scholar 

  19. Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shieh A, Chun RF, Ma C, et al. Effects of high-dose vitamin D2 versus D3 on total and free 25-hydroxyvitamin D and markers of calcium balance. J Clin Endocrinol Metab. 2016;101(8):3070–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Binkley N, Krueger DC, Morgan S, Wiebe D. Current status of clinical 25-hydroxyvitamin D measurement: an assessment of between-laboratory agreement. Clin Chim Acta. 2010;411(23–24):1976–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farrell CJ, Martin S, McWhinney B, Straub I, Williams P, Herrmann M. State-of-the-art vitamin D assays: a comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods. Clin Chem. 2012;58(3):531–42.

    Article  CAS  PubMed  Google Scholar 

  23. Binkley N, Dawson-Hughes B, Durazo-Arvizu, Thamm M, Tian L, Merkel JM, Jones JC, Carter GD, Sempos CT. Vitamin D measurement standardization: the way out of the chaos. J Steroid Biochem Mol Biol. 2017;173:117–21.

    Google Scholar 

  24. Zittermann A, Ernst JB, Becker T, et al. Measurement of circulating 1,25-dihydroxyvitamin D: comparison of an automated method with a liquid chromatography tandem mass spectrometry method. Int J Anal Chem. 2016;2016:8501435.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Endocrine Society. Choosing wisely: don’t routinely measure 1,25-dihydroxyvitamin D unless the patient has hypercalcemia or decreased kidney function. 2013. Available at: http://www.choosingwisely.org/clinician-lists/endocrine-society-vitamin-d-testing/. Accessed Oct 2017.

  26. Martin KJ, Akhtar I, Gonzalez EA. Parathyroid hormone: new assays, new receptors. Semin Nephrol. 2004;24(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  27. D’Amour P. Circulating PTH molecular forms: what we know and what we don’t. Kidney Int Suppl. 2006;102:S29–33.

    Article  Google Scholar 

  28. Martin TJ. Parathyroid hormone-related protein, its regulation of cartilage and bone development, and role in treating bone diseases. Physiol Rev. 2016;96(3):831–71.

    Article  PubMed  Google Scholar 

  29. Chew CK, Clarke BL. Biochemical testing relevant to bone. Endocrinol Metab Clin N Am. 2017;46(3):649–67.

    Article  Google Scholar 

  30. Saraff V, Narayanan VK, Lawson AJ, Shaw NJ, Preece MA, Hogler W. A diagnostic algorithm for children with low alkaline phosphatase activities: lessons learned from laboratory screening for hypophosphatasia. J Pediatr. 2016;172:181–186 e181.

    Article  CAS  PubMed  Google Scholar 

  31. Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318(9):1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schiavi SC, Kumar R. The phosphatonin pathway: new insights in phosphate homeostasis. Kidney Int. 2004;65(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  34. El-Maouche D, Dumitrescu CE, Andreopoulou P, et al. Stability and degradation of fibroblast growth factor 23 (FGF23): the effect of time and temperature and assay type. Osteoporos Int. 2016;27(7):2345–53.

    Article  CAS  PubMed  Google Scholar 

  35. Folsom LJ, Imel EA. Hyperphosphatemic familial tumoral calcinosis: genetic models of deficient FGF23 action. Curr Osteoporos Rep. 2015;13(2):78–87.

    Article  PubMed  Google Scholar 

  36. Gelfand IM, Eugster EA, DiMeglio LA. Presentation and clinical progression of pseudohypoparathyroidism with multi-hormone resistance and Albright hereditary osteodystrophy: a case series. J Pediatr. 2006;149(6):877–80.

    Article  PubMed  Google Scholar 

  37. Lietman SA, Germain-Lee EL, Levine MA. Hypercalcemia in children and adolescents. Curr Opin Pediatr. 2010;22(4):508–15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Attie MF, Gill JR Jr, Stock JL, et al. Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J Clin Invest. 1983;72(2):667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hendy GN, Guarnieri V, Canaff L. Calcium-sensing receptor and associated diseases. Prog Mol Biol Transl Sci. 2009;89:31–95.

    Article  CAS  PubMed  Google Scholar 

  40. Kelly A, Levine M. Disorders of calcium, phosphate, parathyroid hormone and vitamin D. In: Kappy M, Allen D, Geffner M, editors. Pediatric practice: endocrinology. Springfield: Thomas Publisher; 2009. p. 191–256.

    Google Scholar 

  41. Root AW, Diamond FB. Chapter 18 – Disorders of mineral homeostasis in children and adolescents. In: Sperling MA, editor. Pediatric endocrinology. Philadelphia: Saunders; 2014. p. 734–845.e731.

    Google Scholar 

  42. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KLA. Clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26(7):1381–8.

    Google Scholar 

  43. Bohm NM, Hoover KC, Wahlquist AE, Zhu Y, Velez JC. Case-control study and case series of pseudohyperphosphatemia during exposure to liposomal amphotericin B. Antimicrob Agents Chemother. 2015;59(11):6816–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferrari S, Bianchi ML, Eisman JA, et al. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int. 2012;23(12):2735–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Erik Imel for his thoughtful review of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda A. DiMeglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neyman, A., DiMeglio, L.A. (2018). Bone Health Laboratory Assessments. In: Pitts, S., Gordon, C. (eds) A Practical Approach to Adolescent Bone Health . Springer, Cham. https://doi.org/10.1007/978-3-319-72880-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72880-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72879-7

  • Online ISBN: 978-3-319-72880-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics