Skip to main content

Churn Prediction Using Dynamic RFM-Augmented Node2vec

  • Conference paper
  • First Online:
Personal Analytics and Privacy. An Individual and Collective Perspective (PAP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10708))

Included in the following conference series:

Abstract

Current studies on churn prediction in telco apply network analytics to analyze and featurize call graphs. While the suggested approaches demonstrate a lot of creativity when it comes to deriving new features from the underlying networks, they also exhibit at least one of the following problems: they either do not account properly for dynamic aspects of call networks or they do not exploit the full potential of joint interaction and structural features and additionally, they usually address these in a non-systematic manner which involves hand-engineering of features. In this study, we propose a novel approach in which we address each of the identified issues. In a nutshell, first, we propose slicing a monthly call graph to capture dynamic changes in calling patterns. Second, we devise network designs which conjoin interaction and structural information. Third, we adapt and apply the node2vec method to learn node representations in a more automated way and to avoid the need for feature handcrafting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms dynamic, temporal, (time-)evolving, time-varying (networks) are also used interchangeably in the literature.

  2. 2.

    A churner is an individual who has stopped using mobile operator services.

  3. 3.

    The fourth week is considered to begin at \(22^{nd}\) day and lasts till the end of the month, hence longer than three previous weeks.

  4. 4.

    Exceptionally, due to the skewed distribution of R/F/M values, one can end up having less than five quintiles per R/F/M.

References

  1. Backiel, A., Baesens, B., Claeskens, G.: Mining telecommunication networks to enhance customer lifetime predictions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 15–26. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_2

    Chapter  Google Scholar 

  2. Benoit, D.F., Van den Poel, D.: Improving customer retention in financial services using kinship network information. Expert Syst. Appl. 39(13), 11435–11442 (2012)

    Article  Google Scholar 

  3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  4. Chen, Z.Y., Fan, Z.P., Sun, M.: A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. Eur. J. Oper. Res. 223(2), 461–472 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, C.H., Chen, Y.S.: Classifying the segmentation of customer value via RFM model and RS theory. Expert Syst. Appl. 36(3), 4176–4184 (2009)

    Article  Google Scholar 

  6. Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A., Joshi, A.: Social ties and their relevance to churn in mobile telecom networks. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology, pp. 668–677. ACM (2008)

    Google Scholar 

  7. Eichinger, F., Nauck, D.D., Klawonn, F.: Sequence mining for customer behaviour predictions in telecommunications. In: Proceedings of the Workshop on Practical Data Mining at ECML/PKDD, pp. 3–10 (2006)

    Google Scholar 

  8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  9. Hill, S., Agarwal, D.K., Bell, R., Volinsky, C.: Building an effective representation for dynamic networks. J. Comput. Graph. Stat. 15(3), 584–608 (2006)

    Article  MathSciNet  Google Scholar 

  10. Huang, Y., Zhu, F., Yuan, M., Deng, K., Li, Y., Ni, B., Dai, W., Yang, Q., Zeng, J.: Telco churn prediction with big data. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 607–618. ACM (2015)

    Google Scholar 

  11. Hughes, A.M.: Strategic database marketing: the masterplan for starting and managing a profitable. Customer-based Marketing Program, Irwin Professional (1994)

    Google Scholar 

  12. Hung, S.Y., Yen, D.C., Wang, H.Y.: Applying data mining to telecom churn management. Expert Syst. Appl. 31(3), 515–524 (2006)

    Article  Google Scholar 

  13. Keramati, A., Jafari-Marandi, R., Aliannejadi, M., Ahmadian, I., Mozaffari, M., Abbasi, U.: Improved churn prediction in telecommunication industry using data mining techniques. Appl. Soft Comput. 24, 994–1012 (2014)

    Article  Google Scholar 

  14. Kim, K., Jun, C.H., Lee, J.: Improved churn prediction in telecommunication industry by analyzing a large network. Expert Syst. Appl. 41(15), 6575–6584 (2014)

    Article  Google Scholar 

  15. Klepac, G.: Discovering behavioural patterns within customer population by using temporal data subsets. In: Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications, pp. 216–252. IGI Global (2016)

    Google Scholar 

  16. Kusuma, P.D., Radosavljevik, D., Takes, F.W., van der Putten, P.: Combining customer attribute and social network mining for prepaid mobile churn prediction. In: Proceedings of the 23rd Annual Belgian Dutch Conference on Machine Learning (BENELEARN), pp. 50–58 (2013)

    Google Scholar 

  17. Lee, Y.H., Wei, C.P., Cheng, T.H., Yang, C.T.: Nearest-neighbor-based approach to time-series classification. Decis. Support Syst. 53(1), 207–217 (2012)

    Article  Google Scholar 

  18. McCarty, J.A., Hastak, M.: Segmentation approaches in data-mining: a comparison of RFM, chaid, and logistic regression. J. Bus. Res. 60(6), 656–662 (2007)

    Article  Google Scholar 

  19. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)

    Article  MathSciNet  Google Scholar 

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  21. Modani, N., Dey, K., Gupta, R., Godbole, S.: CDR analysis based telco churn prediction and customer behavior insights: a case study. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013. LNCS, vol. 8181, pp. 256–269. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41154-0_19

    Chapter  Google Scholar 

  22. Motahari, S., Jung, T., Zang, H., Janakiraman, K., Li, X.Y., Hoo, K.S.: Predicting the influencers on wireless subscriber churn. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 3402–3407. IEEE (2014)

    Google Scholar 

  23. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph metrics for temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks, pp. 15–40. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36461-7_2

    Chapter  Google Scholar 

  24. Orsenigo, C., Vercellis, C.: Combining discrete svm and fixed cardinality warping distances for multivariate time series classification. Pattern Recogn. 43(11), 3787–3794 (2010)

    Article  MATH  Google Scholar 

  25. Owczarczuk, M.: Churn models for prepaid customers in the cellular telecommunication industry using large data marts. Expert Syst. Appl. 37(6), 4710–4712 (2010)

    Article  Google Scholar 

  26. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  27. Phadke, C., Uzunalioglu, H., Mendiratta, V.B., Kushnir, D., Doran, D.: Prediction of subscriber churn using social network analysis. Bell Labs Tech. J. 17(4), 63–75 (2013)

    Article  Google Scholar 

  28. Raeder, T., Lizardo, O., Hachen, D., Chawla, N.V.: Predictors of short-term decay of cell phone contacts in a large scale communication network. Soc. Netw. 33(4), 245–257 (2011)

    Article  Google Scholar 

  29. Rahman, M., Hasan, M.A.: Link prediction in dynamic networks using graphlet. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 394–409. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_25

    Chapter  Google Scholar 

  30. Saravanan, M., Vijay Raajaa, G.S.: A graph-based churn prediction model for mobile telecom networks. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS (LNAI), vol. 7713, pp. 367–382. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35527-1_31

    Chapter  Google Scholar 

  31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. ACM (2015)

    Google Scholar 

  32. Verbeke, W., Dejaeger, K., Martens, D., Baesens, B.: Customer churn prediction: does technique matter? (2010)

    Google Scholar 

  33. Zhang, X., Zhu, J., Xu, S., Wan, Y.: Predicting customer churn through interpersonal influence. Knowl.-Based Syst. 28, 97–104 (2012)

    Article  Google Scholar 

  34. Zhu, T., Wang, B., Wu, B., Zhu, C.: Role defining using behavior-based clustering in telecommunication network. Expert Syst. Appl. 38(4), 3902–3908 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Mitrović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitrović, S., Baesens, B., Lemahieu, W., De Weerdt, J. (2017). Churn Prediction Using Dynamic RFM-Augmented Node2vec. In: Guidotti, R., Monreale, A., Pedreschi, D., Abiteboul, S. (eds) Personal Analytics and Privacy. An Individual and Collective Perspective. PAP 2017. Lecture Notes in Computer Science(), vol 10708. Springer, Cham. https://doi.org/10.1007/978-3-319-71970-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71970-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71969-6

  • Online ISBN: 978-3-319-71970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics