Skip to main content

Graph Metrics for Temporal Networks

  • Chapter
  • First Online:
Temporal Networks

Abstract

Temporal networks, i.e., networks in which the interactions among a set of elementary units change over time, can be modelled in terms of time-varying graphs, which are time-ordered sequences of graphs over a set of nodes. In such graphs, the concepts of node adjacency and reachability crucially depend on the exact temporal ordering of the links. Consequently, all the concepts and metrics proposed and used for the characterisation of static complex networks have to be redefined or appropriately extended to time-varying graphs, in order to take into account the effects of time ordering on causality. In this chapter we discuss how to represent temporal networks and we review the definitions of walks, paths, connectedness and connected components valid for graphs in which the links fluctuate over time. We then focus on temporal node–node distance, and we discuss how to characterise link persistence and the temporal small-world behaviour in this class of networks. Finally, we discuss the extension of classic centrality measures, including closeness, betweenness and spectral centrality, to the case of time-varying graphs, and we review the work on temporal motifs analysis and the definition of modularity for temporal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to avoid confusion with the size Δt of the time-window used to define the temporal snapshot of a time-varying graph, here we preferred to use Δτ instead of the original Δt proposed by the authors of [20]. Also, notice that the authors use to call events what we have called here contacts.

  2. 2.

    It is possible to prove that a random walk on a graph always converges towards a stationary state, independently of the initial condition, if the adjacency matrix of the graph is primitive, which is the case for the vast majority of real graphs.

  3. 3.

    The interested reader can find the derivation of (23) in [27] and in the Supplemental Information of the same paper.

  4. 4.

    This is required to ensure the existence of a stationary state for the Laplacian dynamics on the graph.

References

  1. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Albert, R., Jeong, H., Barabasi, A.-L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)

    Article  ADS  Google Scholar 

  3. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex networks preserving modularity. New J. Phys. 9(6), 176 (2007)

    Article  ADS  Google Scholar 

  4. Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207–211 (2005)

    Article  ADS  Google Scholar 

  5. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Network 33(1–6), 309–320 (2000)

    Article  Google Scholar 

  7. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  8. Clauset, A., Eagle, N.: Persistence and periodicity in a dynamic proximity network. In: Proceedings of DIMACS Workshop on Computational Methods for Dynamic Interaction Network, Piscataway, 2007

    Google Scholar 

  9. De Vico Fallani, F., Latora, V., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Salinari, S., Colosimo, A., Babiloni, F.: Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. J. Phys. A: Math. Theor. 41(22), 224014 (2008)

    Article  ADS  Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. Gautreau, A., Barrat, A., Barthélemy, M.: Microdynamics in stationary complex networks. Proc. Natl. Acad. Sci. U.S.A. 106(22), 8847–8852 (2009)

    Article  ADS  MATH  Google Scholar 

  12. Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across evolving networks. Phys. Rev. E 83, 046120 (2011)

    Article  ADS  Google Scholar 

  13. Holme, P.: Network reachability of real-world contact sequences. Phys. Rev. E 71, 046119 (2005)

    Article  ADS  Google Scholar 

  14. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). doi:10.1016/j.physrep.2012.03.001.http://www.sciencedirect.com/science/article/pii/S0370157312000841

    Google Scholar 

  15. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations: Proceedings of a Symposium on the Complexity of Computer Computations. The IBM Research Symposia Series. Plenum, New York (1972)

    Google Scholar 

  16. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  17. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a social communication network. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’08), pp. 435–443. ACM, New York (2008)

    Google Scholar 

  19. Kostakos, V.: Temporal graphs. Phys. A: Stat. Mech. Appl. 388, 1007–1023 (2008)

    Article  MathSciNet  Google Scholar 

  20. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech.: Theor. Exp. 2011(11), P11005 (2011)

    Google Scholar 

  21. Lambiotte, R., Delvenne, J.-C., Barahona, M.: Laplacian dynamics and multiscale modular structure in networks. December (2008). arXiv:0812.1770

    Google Scholar 

  22. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  23. Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100, 118703 (2008)

    Article  ADS  Google Scholar 

  24. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  ADS  Google Scholar 

  25. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  ADS  Google Scholar 

  26. Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information spreading. Phys. Rev. E 83, 045102 (2011)

    Article  ADS  Google Scholar 

  27. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Newman, M.: Networks: An Introduction. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  29. Newman, M.E.J.: Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)

    Google Scholar 

  30. Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)

    Google Scholar 

  31. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004)

    Article  ADS  Google Scholar 

  33. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)

    Article  ADS  Google Scholar 

  34. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  ADS  Google Scholar 

  35. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech.: Theor. Exp. 2009(03), P03024 (2009)

    Google Scholar 

  36. Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time-varying graphs. Chaos 22, 023101 (2012)

    Article  ADS  Google Scholar 

  37. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84, 016105 (2011)

    Article  ADS  Google Scholar 

  38. Scellato, S., Leontiadis, I., Mascolo, C., Basu, P., Zafer, M.: Evaluating temporal robustness of mobile networks. IEEE Trans. Mob. Comput. 12(1), 105–117 (2013)

    Article  Google Scholar 

  39. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD trace cambridge/haggle/imote/infocom2006 (v. 2009-05-29). Downloaded from http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom2006. Accessed May 2009

  40. Stehlé, J., Barrat, A., Bianconi, G.: Dynamical and bursty interactions in social networks. Phys. Rev. E 81, 035101 (2010)

    Article  ADS  Google Scholar 

  41. Tang, J., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.: Analysing information flows and key mediators through temporal centrality metrics. In: Proceedings of the 3rd Workshop on Social Network Systems (SNS’10), pp. 3:1–3:6. ACM, New York (2010)

    Google Scholar 

  42. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Characterising temporal distance and reachability in mobile and online social networks. SIGCOMM Comput. Comm. Rev. 40(1), 118–124 (2010)

    Article  Google Scholar 

  43. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-varying graphs. Phys. Rev. E 81, 055101 (2010)

    Article  ADS  Google Scholar 

  44. Tang, J., Leontiadis, I., Scellato, S., Nicosia, V., Mascolo, C., Musolesi, M., Latora, V.: Applications of temporal graph metrics to real-world networks. In: Saramäki, J., Holme, P. (eds.) Temporal Networks. Springer, Heidelberg (2013)

    Google Scholar 

  45. Valencia, M., Martinerie, J., Dupont, S., Chavez, M.: Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys. Rev. E 77, 050905 (2008)

    Article  ADS  Google Scholar 

  46. Vazquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of internet. Phys. Rev. E 65, 066130 (2002)

    Article  ADS  Google Scholar 

  47. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  ADS  Google Scholar 

  48. Wilson, C., Boe, B., Sala, R., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions in social networks and their implications. In: Proceedings of ACM EuroSys’09, Nuremberg (2009)

    Google Scholar 

Download references

Acknowledgements

This work was funded in part through EPSRC Project MOLTEN (EP/I017321/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincenzo Nicosia or Mirco Musolesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V. (2013). Graph Metrics for Temporal Networks. In: Holme, P., Saramäki, J. (eds) Temporal Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36461-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36461-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36460-0

  • Online ISBN: 978-3-642-36461-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics