Skip to main content

Embryonic Factors Associated with Recurrent Implantation Failure

  • Chapter
  • First Online:
Recurrent Implantation Failure

Abstract

Recurrent implantation failure (RIF) is a frustrating clinical scenario for the patient, physician, and embryology team alike. When seemingly “good-quality embryos” fail to implant in a normal uterus following multiple embryo transfers, there is often no immediate obvious reason. Despite considerable improvements in both clinical protocols and laboratory technologies over the last 30 years of assisted reproduction, the question remains as to how best to select the most developmentally competent embryo from a given cohort. The purpose of this chapter is not to provide a comprehensive review of the normal developmental kinetics or morphologic scoring systems of the human preimplantation embryo (reviewed by Matchinger and Racowsky (Reprod Biomed Online 26:210–21, 2013)). Rather, this chapter will (1) focus on embryonic factors associated with implantation in general and RIF specifically and (2) identify interventions in the IVF laboratory at the cleavage and blastocyst stages that may optimize pregnancy rates in this challenging patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Abnormal cleavage

AH:

Assisted hatching

CPR:

Clinical pregnancy rate

FISH :

Fluorescence in situ hybridization

HPI:

Hours post-insemination

ICM:

Inner cell mass

IR:

Implantation rate

LBR:

Live birth rate

NGS:

Next-generation sequencing

PGT-A:

Preimplantation genetic testing for aneuploidy

TE:

Trophectoderm

TLI:

Time-lapse imaging

RC:

Reverse cleavage

RCT:

Randomized controlled trial

RIF:

Recurrent implantation failure

ZP:

Zona pellucida

References

  1. Edwards RG, Purdy JM, Steptoe PC, Walters DE. The growth of human preimplantation of embryos. Am J Obstet Gynecol. 1981;141:408–16.

    Article  CAS  PubMed  Google Scholar 

  2. Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, et al. Standardization of grading embryo morphology. Fertil Steril. 2010;94:1152–3.

    Article  PubMed  Google Scholar 

  3. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;22:632–46.

    Google Scholar 

  4. Sakkas D, Shoukir Y, Chardonnens D, Bianchi PG, Campana A. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod. 1998;13:182–7.

    Article  CAS  PubMed  Google Scholar 

  5. Racowsky C, Combelles CMH, Nureddin A, Pan Y, Finna A, Miles L, et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6:76–84.

    Article  Google Scholar 

  6. Sakkas D, Percival G, D’Arcy Y, Sharif K, Afnan M. Assessment of early cleaving in vitro fertilized human embyos at the 2-cell stage before transfer improves embryo selection. Fertil Steril. 2001;76:1150–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lundin K, Bergh C, Hardarson T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod. 2001;16:2652–7.

    Article  CAS  PubMed  Google Scholar 

  8. Giorgetti C, Hans E, Terriou P, Salzmann J, Barry B, Chabert-Orsini V, et al. Early cleavage: an additional predictor of high implantation rate following elective single embryo transfer. Reprod Biomed Online. 2007;14:85–91.

    Article  CAS  PubMed  Google Scholar 

  9. Puissant F, Van Rysselberge M, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2:705–8.

    Article  CAS  PubMed  Google Scholar 

  10. Steer C, Mills C, Tan S, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer program. Hum Reprod. 1992;7:117–9.

    Article  CAS  PubMed  Google Scholar 

  11. Carrillo AJ, Lane B, Pridman DD, Risch PP, Pool TB, Silverman IH, et al. Improved clinical outcomes for in vitro fertilization with delay of embryo transfer from 48 to 72 h after oocyte retrieval: use of glucose- and phosphate-free media. Fertil Steril. 1998;69:329–34.

    Article  CAS  PubMed  Google Scholar 

  12. Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20:617–31.

    Article  PubMed  Google Scholar 

  13. Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.

    Article  PubMed  Google Scholar 

  14. Rubio I, Kuhlmann R, Agerholm I, Kirk J, Herrero J, Escriba MJ, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98:1458–63.

    Article  PubMed  Google Scholar 

  15. Kirkegaard K, Kesmodel US, Hindkjaer JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod. 2013;28:2643–51.

    Article  CAS  PubMed  Google Scholar 

  16. Chen AA, Tan L, Suraj V, Reijo Pera R, Shen S. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril. 2013;99:1035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98:1481–9.

    Article  PubMed  Google Scholar 

  18. Kahraman S, Cetlinkaya M, Pirkevi C, Yelke H, Kumtepe Y. Comparison of blastocyst development and cycle outcome in patients with eSET using either conventional or time lapse incubators. A prospective study of good prognosis patients. J Reprod Stem Cell Biotechnol. 2013;3:55–61.

    Article  Google Scholar 

  19. Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105:275–85.

    Article  PubMed  Google Scholar 

  20. Kaser DJ, Bormann CL, Missmer SA, Farland LV, Ginsburg ES, Racowsky C. Eeva™ pregnancy pilot study: a randomized controlled trial of single embryo transfer on day 3 or day 5 with or without time-lapse imaging selection. Fertil Steril. 2016;106:e312.

    Article  Google Scholar 

  21. Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102:1287–94.

    Article  PubMed  Google Scholar 

  22. Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet. 2015;32:1025–30.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12:1545–9.

    Article  CAS  PubMed  Google Scholar 

  24. Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15:2634–43.

    Article  CAS  PubMed  Google Scholar 

  25. Hardarson T, Hanson C, Sjogren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16:313–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kligman I, Benadiva C, Alikani M, Munne S. The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod. 1996;11:1492–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jackson K, Ginsburg E, Hornstein M, Rein MS, Clarke RN. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization-transfer cycles. Fertil Steril. 1998;70:60–6.

    Article  CAS  PubMed  Google Scholar 

  28. Saldeen P, Sundstrom P. Nuclear status of four-cell preembryos predicts implantation potential in in vitro fertilization treatment cycles. Fertil Steril. 2005;84:584–9.

    Article  PubMed  Google Scholar 

  29. Tao J, Tamis R, Fink K, Williams B, Nelson-White T, Craig R. The neglected morula/compact stage embryo transfer. Hum Reprod. 2002;17:1513–8.

    Article  PubMed  Google Scholar 

  30. Skiadas C, Jackson K, Racowsky C. Early compaction on day 3 may be associated with increased implantation potential. Fertil Steril. 2006;86:1386–91.

    Article  PubMed  Google Scholar 

  31. Schiewe MC, Araujo E Jr, Asch RH, Balmaceda JP. Enzymatic characterization of zona pellucida hardening in human eggs and embryos. J Assist Reprod Genet. 1995;12:2–7.

    Article  CAS  PubMed  Google Scholar 

  32. Palmstierna M, Murkes D, Csemiczky G, Andersson O, Wramsby H. Zona pellucida thickness variation and occurrence of visible mononucleated blastomeres in pre-embryos are associated with a high pregnancy rate in IVF treatment. J Assist Reprod Genet. 1998;15:70–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gabrielsen A, Bhatnager PR, Petersen K, Lindenberg S. Influence of zona thickness of human embryos on clinical pregnancy outcome following in vitro fertilization treatment. J Assist Reprod Genet. 2000;17:323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skiadas CC, Racowsky C. Developmental rate, cumulative scoring, and embryo viability. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Healthcare; 2007. p. 101–21.

    Google Scholar 

  35. Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, et al. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril. 2014;101:1637–48.

    Article  PubMed  Google Scholar 

  36. Liu Y, Chapple V, Roberts P, Matson P. Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil Steril. 2014;102:1295–300.

    Article  PubMed  Google Scholar 

  37. Gordon JW, Dapunt U. Restoration of normal implantation rates in mouse embryos with a hatching impairment by use of a new method of assisted hatching. Fertil Steril. 1993;59:1302–7.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen J, Wiemer KE, Wright G. Prognostic value of morphologic characteristics of cryopreserved embryos: a study using videocinematography. Fertil Steril. 1988;49:827–34.

    Article  CAS  PubMed  Google Scholar 

  39. Malter HE, Cohen J. Partial zona dissection of the human oocyte: a nontraumatic method using micromanipulation to assist zona pellucida penetration. Fertil Steril. 1989;51:139–48.

    Article  CAS  PubMed  Google Scholar 

  40. Obruca A, Strohmer H, Sakkas D, Menezo Y, Kogosowski A, Barak Y, et al. Use of lasers in assisted fertilization and hatching. Hum Reprod. 1994;9:1723–6.

    Article  CAS  PubMed  Google Scholar 

  41. Nakayama T, Fujiwara H, Tastumi K, Fujita K, Higuchi T, Mori T. A new assisted hatching technique using a piezo-micromanipulator. Fertil Steril. 1998;69:784–8.

    Article  CAS  PubMed  Google Scholar 

  42. Carney SK, Das S, Blake D, Farquhar C, Seif MM, Nelson L. Assisted hatching on assisted conception in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). Cochrane Database Syst Rev. 2012;12:CD001894.

    PubMed  Google Scholar 

  43. Cohen J, Alikani M, Trowbridge J, Rosenwaks Z. Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis. Hum Reprod. 1992;7:685–91.

    Article  CAS  PubMed  Google Scholar 

  44. Nagy ZP, Rienzi L, Iacobelli M, Morgia F, Ubaldi F, Schimberni M, et al. Laser-assisted hatching and removal of degenerated blastomere(s) of frozen-thawed embryo improves pregnancy rate. Fertil Steril. 1999;72:S4.

    Google Scholar 

  45. Balaban B, Urman B, Yakin K, Isiklar A. Laser assisted hatching increases pregnancy and implantation rates in cryopreserved embryos that were allowed to cleave in-vitro after thawing: a prospective randomised study. Hum Reprod. 2006;21:2136–40.

    Article  PubMed  Google Scholar 

  46. Carter J, Graham J, Han T, Davis A, Richter K, Widra E. Preliminary results of a prospective randomized study to assess the value of laser assisted hatching before cleavage stage embryo transfer among good-prognosis in vitro fertilization (IVF) patients. Fertil Steril. 2003;80:S94.

    Article  Google Scholar 

  47. Sagoskin AW, Levy MJ, Tucker MJ, Richter KS, Widra EA. Laser assisted hatching in good prognosis patients undergoing in vitro fertilisation embryo transfer: a randomised control trial. Fertil Steril. 2007;87:283–7.

    Article  PubMed  Google Scholar 

  48. Primi M-P, Senn A, Montag M, Van der Ven H, Mandelbaum J, Veiga A, et al. A European multicentre prospective randomized study to assess the use of assisted hatching with a diode laser and the benefit of immunosuppressive/antibiotic treatment in different patient populations. Hum Reprod. 2004;19:2325–33.

    Article  PubMed  Google Scholar 

  49. Valojerdi MR, Eftekhari-Yazdi P, Karimian L, Hassani F, Movaghar B. Effect of laser zona thinning on vitrified-warmed embryo transfer at the cleavage stage: a prospective, randomized study. Reprod Biomed Online. 2010;20:234–42.

    Article  PubMed  Google Scholar 

  50. Valojerdi MR, Eftekhari-Yazdi P, Karimian L, Ashtiani SK. Effect of laser zona pellucida opening on clinical outcome of assisted reproduction technology in patients with advanced female age, recurrent implantation failure, or frozen-thawed embryos. Fertil Steril. 2008;90:84–91.

    Article  PubMed  Google Scholar 

  51. Stein A, Rufas O, Amit S, Avrech O, Pinkas H, Ovadia J, et al. Assisted hatching by partial zona dissection of human pre-embryos in patients with recurrent implantation failure after in vitro fertilization. Fertil Steril. 1995;63:838–41.

    Article  CAS  PubMed  Google Scholar 

  52. Simon A, Laufer N. Assessment and treatment of repeated implantation failure. J Assist Reprod Genet. 2012;29:1227–39.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jelinkova L, Pavelkova J, Strehler E, Paulus W, Zivny J, Sterzik K. Improved implantation rate after chemical removal of the zona pellucida. Fertil Steril. 2003;79:1299–303.

    Article  PubMed  Google Scholar 

  54. Fang C, Li T, Miao BY, Zhuang GL, Zhou C. Mechanically expanding the zona pellucida of human frozen thawed embryos: a new method of assisted hatching. Fertil Steril. 2010;94:1302–7.

    Article  PubMed  Google Scholar 

  55. Ménézo YJR, Servy E, Veiga A, Hazout A, Elder A. Culture systems: embryo co-culture. In: Smith G, Swain JE, Pool TB, editors. Embryo culture: methods and protocols. New York: Springer; 2012. p. 231–42.

    Chapter  Google Scholar 

  56. Kattal N, Cohen J, Barmat LI. Role of coculture in human in vitro fertilization: a meta-analysis. Fertil Steril. 2008;90:1069–76.

    Article  PubMed  Google Scholar 

  57. Spandorfer SD, Pascal P, Parks J, Clark R, Veeck L, Davis OK, et al. Autologous endometrial coculture in patients with IVF failure: outcome of the first 1,030 cases. J Reprod Med. 2004;49:463–7.

    PubMed  Google Scholar 

  58. Eyheremendy V, Raffo FG, Papayannis M, Barnes J, Granados C, Blaquier J. Beneficial effect of autologous endometrial cell co-culture in patients with repeated implantation failure. Fertil Steril. 2010;93:769–73.

    Article  PubMed  Google Scholar 

  59. Benkhalifa M, Demirol A, Sari T, Balashova E, Tsouroupaki M, Giakoumakis Y, et al. Autologous embryo-cumulus cells co-culture and blastocyst transfer in repeated implantation failures: a collaborative prospective randomized study. Zygote. 2012;7:1–8.

    Google Scholar 

  60. Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2016;6:CD002118.

    Google Scholar 

  61. Guerif F, Bidault R, Gasnier O, Couet ML, Gervereau O, Lansac J, et al. Efficacy of blastocyst transfer after implantation failure. Reprod Biomed Online. 2004;9:630–6.

    Article  CAS  PubMed  Google Scholar 

  62. Levitas E, Lunenfeld E, Har-Vardi I, Albotiano S, Sonin Y, Hackmon-Ram R, et al. Blastocyst-stage embryo transfer in patients who failed to conceive in three or more day 2-3 embryo transfer cycles: a prospective, randomized study. Fertil Steril. 2004;81:567–71.

    Article  PubMed  Google Scholar 

  63. Gardner DK, Schoolcraft WB. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond 1999. Carnforth: Parthenon; 1999. p. 378–88.

    Google Scholar 

  64. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;8:551–5.

    Article  Google Scholar 

  65. Guerif F, Le Gouge A, Giraudeau B, Poindrom J, Bidault R, Gasnier O, et al. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development: a prospective study based on 4,042 embryos. Hum Reprod. 2007;22:1973–81.

    Article  CAS  PubMed  Google Scholar 

  66. Van den Abbeel E, Balaban B, Ziebe S, Lundin K, Cuesta MJ, Klein BM, et al. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod Biomed Online. 2013;27:353–61.

    Article  PubMed  Google Scholar 

  67. Hill MJ, Richter KS, Heitmann RJ, Grahm JR, Tucker MJ, DeCherney AH, et al. Trophectoderm grade predicts outcomes of single-blastocyst transfers. Fertil Steril. 2013;99:1283–9.

    Article  PubMed  Google Scholar 

  68. Shapiro BS, Richter KS, Harris DC, Daneshmand ST. A comparison of day 5 and day 6 blastocyst transfers. Fertil Steril. 2001;75:1126–30.

    Article  CAS  PubMed  Google Scholar 

  69. Barrenetxea G, López de Larruzea A, Ganzabal T, Jiménez R, Carbonero K, Mandiola M. Blastocyst culture after repeated failure of cleavage-stage embryo transfers: a comparison of day 5 and day 6 transfers. Fertil Steril. 2005;83:49–53.

    Article  PubMed  Google Scholar 

  70. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013;27:140–6.

    Article  PubMed  Google Scholar 

  71. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Ross R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89:20–6.

    Article  PubMed  Google Scholar 

  72. Richter KS, Shipley SK, McVearry I, Tucker MJ, Widra EA. Cryopreserved embryo transfers suggest that endometrial receptivity may contribute to reduced success rates of later developing embryos. Fertil Steril. 2006;86:862–6.

    Article  PubMed  Google Scholar 

  73. Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013;99:389–92.

    Article  PubMed  Google Scholar 

  74. Ahlstrom A, Westin C, Reismer E, Wikland M, Hardarson T. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26:3289–96.

    Article  CAS  PubMed  Google Scholar 

  75. Honnma H, Baba T, Sasaki M, Hashiba Y, Ohno H, Fukunaga T, et al. Trophectoderm morphology significantly affects the rates of ongoing pregnancy and miscarriage in frozen-thawed single-blastocyst transfer cycle in vitro fertilization. Fertil Steril. 2012;98:361–7.

    Article  PubMed  Google Scholar 

  76. Devroey P, Polyzos NP, Blockeel C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod. 2011;26:2593–7.

    Article  PubMed  Google Scholar 

  77. Kaser DJ, Racowsky C. Should we eliminate fresh embryo transfer from ART. In: Schlegel PN, et al., editors. Biennial review of infertility, vol. 3. New York: Springer; 2013. p. 203–14.

    Chapter  Google Scholar 

  78. Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010;27:357–63.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shapiro BS, Daneshmand ST, Garner FC, et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen- thawed embryo transfer in normal responders. Fertil Steril. 2011a;96:344–8.

    Article  PubMed  Google Scholar 

  80. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011b;96:516–8.

    Article  PubMed  Google Scholar 

  81. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375:523–33.

    Article  PubMed  Google Scholar 

  82. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the blastocyst or bipronuclear stage: a randomized controlled trial. Fertil Steril. 2015;104:1138–44.

    Article  PubMed  Google Scholar 

  83. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all can be a superior therapy to another fresh cycle in patients with prior fresh blastocyst implantation failure. Reprod Biomed Online. 2014;29:286–90.

    Article  PubMed  Google Scholar 

  84. Wirleitner B, Schuff M, Stecher A, Murtinger M, Vanderzwalmen P. Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Hum Reprod. 2016;31:1685–95.

    Article  CAS  PubMed  Google Scholar 

  85. Scott RT Jr, Uphapm KM, Forman EJ, Hong KH, Scott KL, Taylor D, et al. Blastocyst biopsy with comprehensive chromosomal screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013a;100:697–703.

    Article  PubMed  Google Scholar 

  86. Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013b;100:624–30.

    Article  PubMed  Google Scholar 

  87. Platteau P, Staessen C, Michiels A, Van Steirteghem A, Liebaers I, Devroey P. Which patients with recurrent implantation failure after IVF benefit from PGD for aneuploidy screening? Reprod Biomed Online. 2006;12:334–9.

    Article  CAS  PubMed  Google Scholar 

  88. Pagidas K, Ying Y, Keefe D. Predictive value of preimplantation genetic diagnosis for aneuploidy screening in repeated IVF-ET cycles among women with recurrent implantation failure. J Assist Reprod Genet. 2008;25:103–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Werner MD, Goodrich D, Tao X, Zhan Y, Franasiak JM, Juneau CR, et al. NGS provides accurate predictions of segmental aneuploidy and prognosticates reduced reproductive potential of the human blastocyst. Fertil Steril. 2016;106:e68.

    Article  Google Scholar 

  90. Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26:1981–6.

    Article  CAS  PubMed  Google Scholar 

  91. RoyChoudhury S, Singh A, Gupta NJ, Srivastava S, Joshi MV, Chakravarty B, et al. Repeated implantation failure versus repeated implantation success: discrimination at a metabolomic level. Hum Reprod. 2016;31:1265–74.

    Article  CAS  PubMed  Google Scholar 

  92. Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Racowsky PhD, HCLD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaser, D.J., Racowsky, C. (2018). Embryonic Factors Associated with Recurrent Implantation Failure. In: Franasiak, J., Scott Jr., R. (eds) Recurrent Implantation Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-71967-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71967-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71966-5

  • Online ISBN: 978-3-319-71967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics