Skip to main content

Sperm DNA and Pregnancy Loss After IVF and ICSI

  • Chapter
  • First Online:
A Clinician's Guide to Sperm DNA and Chromatin Damage

Abstract

The fertilization potential of spermatozoa is canonically assessed by their concentration, motility, and morphology in the ejaculate. Though these parameters give a general account on the quality of spermatozoa, there is no definite predictive threshold with regard to pregnancy rates. Therefore, there is continuous quest for development of new tests for predicting the chance of pregnancy. Since the primary function of spermatozoon is to deliver the paternal genetic component to the oocyte for the development of foetus, there have been attempts to propose sperm DNA fragmentation tests for male reproductive capability. As transcription and translation stop post-spermiogenesis, these cells are devoid of DNA repair systems and accumulate the damage that occurred during their transit through the epididymis and post-ejaculation. To counteract the consequences, nature has bestowed oocytes and early embryos with the ability to repair sperm DNA damage. Hence, the effect of sperm DNA fragmentation depends on the sum total of sperm chromatin integrity and the capacity of the oocyte to repair it. Various intrinsic and extrinsic factors are responsible for inducing DNA lesions in the spermatozoa which may be enhanced by iatrogenic factors during sperm preparation for IVF and ICSI. Correlation between sperm DNA fragmentation and pregnancy outcome in IVF and ICSI is debated. In this chapter the primary focus is on the role of a spermatozoon carrying DNA damage on pregnancy outcome, the predictive potential of existing DNA tests, the late paternal effect and repair capability of oocytes of damaged sperm DNA, and the possible treatment interventions for better outcome in IVF and ICSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macklon NS, Geraedts JP, Fauser BC. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum Reprod Update. 2002;8(4):333–43.

    Article  CAS  PubMed  Google Scholar 

  2. Swain N, et al. Proteomics and male infertility, in proteomics in human reproduction: biomarkers for millennials. Cham: Springer International Publishing; 2016. p. 21–43.

    Book  Google Scholar 

  3. Swain N, Cirenza C, Samanta L. Role of proteomics in female infertility, in proteomics in human reproduction: biomarkers for millennials. Cham: Springer International Publishing; 2016. p. 45–63.

    Book  Google Scholar 

  4. Marteil G, Richard-Parpaillon L, Kubiak JZ. Role of oocyte quality in meiotic maturation and embryonic development. Reprod Biol. 2009;9(3):203–24.

    Article  PubMed  Google Scholar 

  5. Coughlan C, et al. Sperm DNA fragmentation, recurrent implantation failure and recurrent miscarriage. Asian J Androl. 2015;17(4):681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bach PV, Schlegel PN. Sperm DNA damage and its role in IVF and ICSI. Basic Clin Androl. 2016;26:15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zini A, Libman J. Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ. 2006;175(5):495–500.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zini A, et al. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663–8.

    Article  CAS  PubMed  Google Scholar 

  9. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online. 2006;12(4):466–72.

    Article  CAS  PubMed  Google Scholar 

  10. Muriel L, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2006;85(2):371–83.

    Article  CAS  PubMed  Google Scholar 

  11. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19(3):611–5.

    Article  CAS  PubMed  Google Scholar 

  12. De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19(3):169–85.

    Article  PubMed  Google Scholar 

  13. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.

    Article  CAS  PubMed  Google Scholar 

  14. Irvine DS, et al. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.

    CAS  PubMed  Google Scholar 

  15. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    Article  CAS  PubMed  Google Scholar 

  16. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  17. Evenson D. Reply to: ‘The predictive value of the sperm chromatin structure assay (SCSA)’ – a response from the SCSA inventor. Hum Reprod. 2006;21(2):570–2.

    Article  PubMed  Google Scholar 

  18. Samanta L, Mohanty G, Agarwal A. Male factors in recurrent pregnancy loss, in recurrent pregnancy loss. New York: Springer; 2016. p. 109–29.

    Google Scholar 

  19. Gonzalez-Marin C, Gosalvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13(11):14026–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esterhuizen AD, et al. Defective sperm decondensation: a cause for fertilization failure. Andrologia. 2002;34(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  21. Sakkas D, et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod. 1996;11(4):837–43.

    Article  CAS  PubMed  Google Scholar 

  22. Tavalaee M, Razavi S, Nasr-Esfahani MH. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril. 2009;91(4):1119–26.

    Article  CAS  PubMed  Google Scholar 

  23. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284(6):696–704.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmadi A, Ng SC. Developmental capacity of damaged spermatozoa. Hum Reprod. 1999;14(9):2279–85.

    Article  CAS  PubMed  Google Scholar 

  25. Wdowiak A, Bakalczuk S, Bakalczuk G. The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intracytoplasmatic sperm injection. Reprod Biol. 2015;15(2):94–100.

    Article  PubMed  Google Scholar 

  26. Tesarik J, Mendoza C, Greco E. Paternal effects acting during the first cell cycle of human preimplantation development after ICSI. Hum Reprod. 2002;17(1):184–9.

    Article  PubMed  Google Scholar 

  27. Speyer BE, et al. Fall in implantation rates following ICSI with sperm with high DNA fragmentation. Hum Reprod. 2010;25(7):1609–18.

    Article  CAS  PubMed  Google Scholar 

  28. Braude P, Bolton V, Moore S. Human gene expression first occurs between the four-and eight-cell stages of preimplantation development. Nature. 1988;332(6163):459–61.

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee S, et al. Does blastocyst culture eliminate paternal chromosomal defects and select good embryos?: inheritance of an abnormal paternal genome following ICSI. Hum Reprod. 2000;15(12):2455–9.

    Article  CAS  PubMed  Google Scholar 

  30. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81(5):1289–95.

    Article  PubMed  Google Scholar 

  31. Seli E, et al. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82(2):378–83.

    Article  PubMed  Google Scholar 

  32. Benchaib M, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18(5):1023–8.

    Article  PubMed  Google Scholar 

  33. Avendano C, et al. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549–57.

    Article  PubMed  Google Scholar 

  34. Marchetti F, et al. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A. 2007;104(45):17725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menezo Y Jr, et al. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet. 2007;24(11):513–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jaroudi S, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod. 2009;24(10):2649–55.

    Article  CAS  PubMed  Google Scholar 

  37. Gosalvez J, et al. Can DNA fragmentation of neat or swim-up spermatozoa be used to predict pregnancy following ICSI of fertile oocyte donors? Asian J Androl. 2013;15(6):812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao J, et al. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102(4):998–1005. e8

    Article  CAS  PubMed  Google Scholar 

  39. Esbert M, et al. Impact of sperm DNA fragmentation on the outcome of IVF with own or donated oocytes. Reprod Biomed Online. 2011;23(6):704–10.

    Article  CAS  PubMed  Google Scholar 

  40. Meseguer M, et al. Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril. 2011;95(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  41. Nunez-Calonge R, et al. An improved experimental model for understanding the impact of sperm DNA fragmentation on human pregnancy following ICSI. Reprod Sci. 2012;19(11):1163–8.

    Article  CAS  PubMed  Google Scholar 

  42. Alvarez JG. The predictive value of sperm chromatin structure assay. Hum Reprod. 2005;20(8):2365–7.

    Article  PubMed  Google Scholar 

  43. Payne JF, et al. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005;84(2):356–64.

    Article  PubMed  Google Scholar 

  44. Mohanty G, et al. Histone retention, protein carbonylation, and lipid peroxidation in spermatozoa: possible role in recurrent pregnancy loss. Syst Biol Reprod Med. 2016;62(3):201–12.

    Article  CAS  PubMed  Google Scholar 

  45. Donnelly ET, et al. Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod. 2000;15(7):1552–61.

    Article  CAS  PubMed  Google Scholar 

  46. Morrell JM, et al. Reduced senescence and retained nuclear DNA integrity in human spermatozoa prepared by density gradient centrifugation. J Assist Reprod Genet. 2004;21(6):217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caglar GS, et al. Semen DNA fragmentation index, evaluated with both TUNEL and Comet assay, and the ICSI outcome. In Vivo. 2007;21(6):1075–80.

    CAS  PubMed  Google Scholar 

  48. Simon L, et al. Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril. 2011;95(2):652–7.

    Article  PubMed  Google Scholar 

  49. Sakkas D, et al. The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies. Hum Reprod. 2000;15(5):1112–6.

    Article  CAS  PubMed  Google Scholar 

  50. Piomboni P, et al. Ultrastructural and DNA fragmentation analyses in swim-up selected human sperm. Arch Androl. 2006;52(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  51. Jayaraman V, et al. Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. J Assist Reprod Genet. 2012;29(6):557–63.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zini A, et al. Influence of semen processing technique on human sperm DNA integrity. Urology. 2000;56(6):1081–4.

    Article  CAS  PubMed  Google Scholar 

  53. Hammadeh ME, et al. Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer. Int J Androl. 2001;24(6):360–8.

    Article  CAS  PubMed  Google Scholar 

  54. Bungum M, et al. Sperm chromatin structure assay parameters measured after density gradient centrifugation are not predictive for the outcome of ART. Hum Reprod. 2008;23(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  55. Tomlinson MJ, et al. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod. 2001;16(10):2160–5.

    Article  CAS  PubMed  Google Scholar 

  56. Host E, Lindenberg S, Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand. 2000;79(7):559–63.

    Article  CAS  PubMed  Google Scholar 

  57. Oliveira JB, et al. Correlation between semen analysis by motile sperm organelle morphology examination and sperm DNA damage. Fertil Steril. 2010;94(5):1937–40.

    Article  CAS  PubMed  Google Scholar 

  58. Aitken RJ, Hanson AR, Kuczera L. Electrophoretic sperm isolation: optimization of electrophoresis conditions and impact on oxidative stress. Hum Reprod. 2011;26(8):1955–64.

    Article  PubMed  Google Scholar 

  59. Wang W, et al. Effects of a microfluidic sperm sorter on sperm routine parameters and DNA integrity. Zhonghua Nan Ke Xue. 2011;17(4):301–4.

    PubMed  Google Scholar 

  60. Kheirollahi-Kouhestani M, et al. Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum Reprod. 2009;24(10):2409–16.

    Article  CAS  PubMed  Google Scholar 

  61. Zahedi A, et al. Zeta potential vs apoptotic marker: which is more suitable for ICSI sperm selection? J Assist Reprod Genet. 2013;30(9):1181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petersen CG, et al. Relationship between DNA damage and sperm head birefringence. Reprod Biomed Online. 2011;22(6):583–9.

    Article  CAS  PubMed  Google Scholar 

  63. Rappa KL, et al. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34(5):578–87.

    Article  PubMed  Google Scholar 

  64. Tandara M, et al. Sperm DNA integrity testing: big halo is a good predictor of embryo quality and pregnancy after conventional IVF. Andrology. 2014;2(5):678–86.

    Article  CAS  PubMed  Google Scholar 

  65. Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56(3):602–7.

    Article  CAS  PubMed  Google Scholar 

  66. Bakos HW, et al. Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int J Androl. 2008;31(5):518–26.

    Article  CAS  PubMed  Google Scholar 

  67. Marchetti C, et al. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002;17(5):1257–65.

    Article  PubMed  Google Scholar 

  68. Zhang X, et al. Localization of single-stranded DNA in human sperm nuclei. Fertil Steril. 2007;88(5):1334–8.

    Article  PubMed  Google Scholar 

  69. Pregl Breznik B, Kovacic B, Vlaisavljevic V. Are sperm DNA fragmentation, hyperactivation, and hyaluronan-binding ability predictive for fertilization and embryo development in in vitro fertilization and intracytoplasmic sperm injection? Fertil Steril. 2013;99(5):1233–41.

    Article  CAS  PubMed  Google Scholar 

  70. Gu LJ, et al. Sperm chromatin anomalies have an adverse effect on the outcome of conventional in vitro fertilization: a study with strictly controlled external factors. Fertil Steril. 2009;92(4):1344–6.

    Article  PubMed  Google Scholar 

  71. Tarozzi N, et al. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18(4):486–95.

    Article  PubMed  Google Scholar 

  72. Filatov MV, et al. Relationship between abnormal sperm chromatin packing and IVF results. Mol Hum Reprod. 1999;5(9):825–30.

    Article  CAS  PubMed  Google Scholar 

  73. Haidl G, Schill WB. Assessment of sperm chromatin condensation: an important test for prediction of IVF outcome. Arch Androl. 1994;32(3):263–6.

    Article  CAS  PubMed  Google Scholar 

  74. Claassens OE, et al. The Acridine Orange test: determining the relationship between sperm morphology and fertilization in vitro. Hum Reprod. 1992;7(2):242–7.

    Article  CAS  PubMed  Google Scholar 

  75. Liu DY, Baker HW. Sperm nuclear chromatin normality: relationship with sperm morphology, sperm-zona pellucida binding, and fertilization rates in vitro. Fertil Steril. 1992;58(6):1178–84.

    Article  CAS  PubMed  Google Scholar 

  76. Janny L, Menezo YJ. Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev. 1994;38(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  77. Henkel R, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81(4):965–72.

    Article  CAS  PubMed  Google Scholar 

  78. Lopez G, et al. Diagnostic value of sperm DNA fragmentation and sperm high-magnification for predicting outcome of assisted reproduction treatment. Asian J Androl. 2013;15(6):790–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Simon L, et al. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod Biomed Online. 2013;26(1):68–78.

    Article  CAS  PubMed  Google Scholar 

  80. Tomsu M, Sharma V, Miller D. Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameters. Hum Reprod. 2002;17(7):1856–62.

    Article  CAS  PubMed  Google Scholar 

  81. Osman A, et al. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  82. Lopes S, et al. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69(3):528–32.

    Article  CAS  PubMed  Google Scholar 

  83. Cebesoy FB, Aydos K, Unlu C. Effect of sperm chromatin damage on fertilization ratio and embryo quality post-ICSI. Arch Androl. 2006;52(5):397–402.

    Article  CAS  PubMed  Google Scholar 

  84. Borini A, et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21(11):2876–81.

    Article  CAS  PubMed  Google Scholar 

  85. Micinski P, et al. The sperm chromatin structure assay (SCSA) as prognostic factor in IVF/ICSI program. Reprod Biol. 2009;9(1):65–70.

    Article  PubMed  Google Scholar 

  86. Dar S, et al. In vitro fertilization-intracytoplasmic sperm injection outcome in patients with a markedly high DNA fragmentation index (>50%). Fertil Steril. 2013;100(1):75–80.

    Article  PubMed  Google Scholar 

  87. Rubio C, et al. Incidence of sperm chromosomal abnormalities in a risk population: relationship with sperm quality and ICSI outcome. Hum Reprod. 2001;16(10):2084–92.

    Article  CAS  PubMed  Google Scholar 

  88. Calogero AE, et al. High sperm aneuploidy rate in unselected infertile patients and its relationship with intracytoplasmic sperm injection outcome. Hum Reprod. 2001;16(7):1433–9.

    Article  CAS  PubMed  Google Scholar 

  89. Burrello N, et al. Lower sperm aneuploidy frequency is associated with high pregnancy rates in ICSI programmes. Hum Reprod. 2003;18(7):1371–6.

    Article  PubMed  Google Scholar 

  90. Pang MG, et al. Detection of aneuploidy for chromosomes 4, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 21, X and Y by fluorescence in-situ hybridization in spermatozoa from nine patients with oligoasthenoteratozoospermia undergoing intracytoplasmic sperm injection. Hum Reprod. 1999;14(5):1266–73.

    Article  CAS  PubMed  Google Scholar 

  91. Nicopoullos JD, et al. Sperm DNA fragmentation in subfertile men: the effect on the outcome of intracytoplasmic sperm injection and correlation with sperm variables. BJU Int. 2008;101(12):1553–60.

    Article  PubMed  Google Scholar 

  92. Sergerie M, et al. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod. 2005;20(12):3446–51.

    Article  CAS  PubMed  Google Scholar 

  93. Benchaib M, et al. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  94. Bungum M, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  95. Jiang H, et al. The relationship of sperm DNA fragmentation index with the outcomes of in-vitro fertilisation-embryo transfer and intracytoplasmic sperm injection. J Obstet Gynaecol. 2011;31(7):636–9.

    Article  CAS  PubMed  Google Scholar 

  96. Bungum M, et al. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination IVF and ICSI. Hum Reprod. 2004;19(6):1401–8.

    Article  CAS  PubMed  Google Scholar 

  97. Huang CC, et al. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84(1):130–40.

    Article  PubMed  Google Scholar 

  98. Velez de la Calle JF, et al. Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril. 2008;90(5):1792–9.

    Article  PubMed  Google Scholar 

  99. Larson-Cook KL, et al. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80(4):895–902.

    Article  PubMed  Google Scholar 

  100. Henkel R, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online. 2003;7(4):477–84.

    Article  PubMed  Google Scholar 

  101. Kennedy C, et al. Sperm chromatin structure correlates with spontaneous abortion and multiple pregnancy rates in assisted reproduction. Reprod Biomed Online. 2011;22(3):272–6.

    Article  CAS  PubMed  Google Scholar 

  102. Li Z, et al. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet. 2006;23(9–10):367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Robinson L, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908–17.

    Article  CAS  PubMed  Google Scholar 

  104. Simon L, et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2017;19(1):80–90.

    PubMed  Google Scholar 

  105. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89(4):823–31.

    Article  PubMed  Google Scholar 

  106. Zhang Z, et al. Sperm DNA fragmentation index and pregnancy outcome after IVF or ICSI: a meta-analysis. J Assist Reprod Genet. 2015;32(1):17–26.

    Article  PubMed  Google Scholar 

  107. Pabuccu EG, et al. Testicular versus ejaculated spermatozoa in ICSI cycles of normozoospermic men with high sperm DNA fragmentation and previous ART failures. Andrologia. 2017;49(2):e12609.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luna Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swain, N., Mohanty, G., Samanta, L. (2018). Sperm DNA and Pregnancy Loss After IVF and ICSI. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics