Skip to main content

The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change

  • Chapter
  • First Online:
Interdisciplinary Approaches for Sustainable Development Goals

Abstract

Peatlands are unique habitats that are covering around 3% of the land area and they are characterized by high sensitivity to climate. These very complex ecosystems impact both water and carbon cycle at local as well as global scale. Peatlands are also valuable ecosystems due to their mitigating features in terms of floods or soil erosion and they can store and filtrate water in the landscape as well. As a result of high moisture they can also gather a big amount of carbon and this ability makes peatlands climate coolers. On the other hand a stored carbon can be released into the atmosphere due to peat moisture decrease and it accelerate the global warming processes. Beside climate changes, peatlands are under pressure that is caused by human activities like land use changes or fires. Peatlands protection and restoration can both mitigate climate changes and water balance disturbances. A review of peatlands status and feature in the context of climate changes and human-induced disturbances are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams JF (2016) Impacts of Indonesian peatland degradation on the coastal ecosystems and the global carbon cycle. Dissertation, Jacobs University, Bremen

    Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycl 15:955–966

    Article  CAS  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Change Biol 10:1043–1051

    Article  Google Scholar 

  • Benscoter BW, Greenacre D, Turetsky MR (2015) Wildfire as a key determinant of peatland microtopography. Can J For Res 45(8):1133–1137

    Article  Google Scholar 

  • Billett MF, Charman DJ, Clark JM, Evans CD, Evans MG, Ostle NJ, Worrall F, Burden A, Dinsmore KJ, Jones T, McNamara NP, Parry L, Rowson JG, Rose R (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Clim Res 45:13–29

    Article  Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands—A review of processes and controls. Env Rev 10(2):111–134

    Article  CAS  Google Scholar 

  • Bonn A, Allott T, Joosten H, Evans M, Stoneman R (2016) Peatland restoration and ecosystem services: science, policy and practice. Cambridge University Press, UK

    Book  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19:1325–1346

    Article  Google Scholar 

  • Burkett V, Kusler J (2002) Climate change: potential impacts and interactions in wetlands of the United States. JAWRA J Am Water Res Assoc 36(2):313–320

    Article  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. P Natl Acad Sci USA 104:18866–18870

    Article  CAS  Google Scholar 

  • Canadian University of Waterloo report (2017) http://www.intactcentreclimateadaptation.ca/wp-content/uploads/2017/07/When-the-Big-Storms-Hit.pdf. Accessed on 30 Jul 2017

  • Charman D, Mäkilä M (2003) Climate reconstruction from peatlands. PAGES Newsletter 11:15–17

    Google Scholar 

  • Charman DJ, Beilman DW, Blaauw M, Booth RK, Brewer S, Chambers FM, Christen JA, Gallego-Sala A, Harrison SP, Hughes PDM, Jackson ST, Korhola A, Mauquoy D, Mitchell FJG, Prentice IC, van der Linden M, De Vleeschouwer F, Yu ZC, Alm J, Bauer IE, Corish YMC, Garneau M, Hohl V, Huang Y, Karofeld E, Le Roux G, Loisel J, Moschen R, Nichols JE, Nieminen TM, MacDonald GM, Phadtare NR, Rausch N, Sillasoo Ü, Swindles GT, Tuittila ES, Ukonmaanaho L, Väliranta M, van Bellen S, van Geel B, Vitt DH, Zhao Y (2013) Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10(2):929–944

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arrit R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, de Elia R, Dethloff K (2007) Near-term Climate Change: projections and Predictability. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK, p 847–940

    Google Scholar 

  • Christian TJ, Kleiss B, Yokelson RJ, Holzinger R, Crutzen PJ, Hao WM, Saharjo BH, Ward DE (2003) Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. J Geophys Res. https://doi.org/10.1029/2003JD003704

  • Clymo RS (1984) The limits to peat bog growth. Phil Trans Royal Soc London B 303:605–654

    Article  Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon Accumulation in Peatland. Oikos 81(2):368–388. https://doi.org/10.2307/3547057

    Article  Google Scholar 

  • Cox P, Jones C (2008) Illuminating the Modern Dance of Climate and CO2. Science 321:1642–1644

    Article  CAS  Google Scholar 

  • Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature. https://doi.org/10.1038/nature20150

    Google Scholar 

  • Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA (2017) Age extent and carbon storage of the central Congo Basin peatland complex. Nature. https://doi.org/10.1038/nature21048

    Google Scholar 

  • De Jong R, Blaauw M, Chambers FM, Christensen TR, De Vleeschouwer F, Finsinger W, Fronzek S, Johansson M, Kokfelt U, Lamentowicz M, LeRoux G, Mitchell EAD, Mauquoy D, Nichols JE, Samaritani E, van Geel B (2010) Climate and Peatlands. In: Dodson J (ed) Changing Climates, Earth Systems and Society. Series: International Year of Planet Earth. Springer, Heidelberg, p 85–121

    Google Scholar 

  • Dise NB (2010) Peatland response to global change. Science 326:810–811

    Article  Google Scholar 

  • Dise NB, Narasinha JS, Weishampel P, Verma SB, Verry ES, Gorham E, Crill PM, Harriss RC, Kelley CA, Yavitt JB, Smemo KA, Kolka RK, Smith K, Kim J, Clement RJ, Arkebauer TJ, Bartlett KB, Billesbach DP, Bridgham SD, Elling AE, Flebbe PA, King JY, Martens CS, Sebacher DI, Williams CJ, Wieder RK (2011) Carbon emissions from peatlands. Peatland Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest. CRC Press, USA, p 297–347

    Google Scholar 

  • Dorrepaal E, Toet S, Van logtestijn RSP, Swart E, Van De Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619

    Google Scholar 

  • Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Coronado ENH, Lähteenoja O, Montenegro LT, Sandoval LV, Zaráte R, Baker TR (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental Research Letters. https://doi.org/10.1088/1748-9326/9/12/124017

    Google Scholar 

  • Erwin KL (2009) Peatlands and global climate change: the role of peatland restoration in a changing world. Wetlands Ecol Manag 17:71–84

    Article  Google Scholar 

  • Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR, Lowe DC, MacFarling Meure CM, Dreier MF, Trudinger CM, van Ommen TD, Langenfelds RL (2005) Unexpected changes to the global methane budget over the past 2000 years. Science. https://doi.org/10.1126/science.1115193

    Google Scholar 

  • Flannigan M, Campbell I, Wotton M, Carcaillet C, Richard P, Bergeron Y (2001) Future fire in Canada’s boreal forest: paleoecology results and general circulation model - regional climate model simulations. Can J For Res 31:854–864

    Article  Google Scholar 

  • Frank DC, Esper J, Raible CC, Buntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature. https://doi.org/10.1038/nature08769

    Google Scholar 

  • Frolking SE, Bubier JL, Moore TR, Ball T, Bellisario LM, Bhardwaj A, Carroll P, Crill PM, Lafleur PM, McCaughey JH, Roulet NT, Suyker AE, Verma SB, Waddington JM, Whiting GJ (1998) Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Glob Biogeochem Cycl 12(1):115–126

    Article  CAS  Google Scholar 

  • Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N (2011) Peatlands in the Earth’s 21st century climate system. Env Rev 19:371–396. https://doi.org/10.1139/a11-014

    Article  CAS  Google Scholar 

  • Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, Fiore-Donno AM, Heger TJ, Jassey VEJ, Krashevska V, Lahr DJG, Marcisz K, Mulot M, Payne R, Singer D, Anderson OR, Charman DJ, Ekelund F, Griffiths BS, Rønn R, Smirnov A, Bass D, Belbahri L, Berney C, Blandenier Q, Chatzinotas A, Clarholm M, Dunthorn M, Feest A, Fernández LD, Foissner W, Fournier B, Gentekaki E, Hájek M, Helder J, Jousset A, Koller R, Kumar S, La Terza A, Lamentowicz M, Mazei Y, Santos SS, Seppey CVW, Spiegel FW, Walochnik J, Winding A, Lara E (2017) Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem 111:94–103

    Article  CAS  Google Scholar 

  • Glińska-Lewczuk K, Burandt P, Łaźniewska I, Łaźniewski J, Menderski S, Pisarek W (2014) Ochrona i renaturyzacja torfowisk wysokich w rezerwatach Gązwa, Zielony Mechacz i Sołtysek w północno-wschodniej Polsce. Wydawnictwo Polskiego Towarzystwa Ochrony Ptaków, Białowieża

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probably responses to climate warming. Ecol Appl. https://doi.org/10.2307/1941811

    Google Scholar 

  • Hamada Y, Darung U, Limin SH, Hatano R (2013) Characteristics of the fire-generated gas emission observed during a large peatland fire in 2009 at Kalimantan, Indonesia. Atmos Environ 74:177–181

    Article  CAS  Google Scholar 

  • Hedberg P, Saetre P, Sundberg S, Rydin H, Kotowski W (2013) A functional trait approach to fen restoration analysis. Appl Veg Sci 16:658–666

    Article  Google Scholar 

  • Herbichowa M (2007) Eksperymentalna reintrodukcja gatunków z rodzaju Sphagnum. In: Herbichowa M, Pawlaczyk P, Stańko R (eds) Ochrona wysokich torfowisk batyckich na Pomorzu. Doświadczenia i rezultaty projektu LIFE 04/NAT/PL/00208 PLB BOGS. Wyd. Klub Przyrodników, Świebodzin, p 128–130

    Google Scholar 

  • Higuera PE (2015) Taking time to consider the causes and consequences of large wildfires. Proc Natl Acad Sci USA 112:13137–13138

    Article  CAS  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7(5):1505–1514

    Article  CAS  Google Scholar 

  • Ilnicki P, Iwaniszyniec P (2002) Emmisions of greenhouse gases (GHG) from peatland in Restoration of carbon sequestrating capacity and biodiversity in abandoned grassland on peatland in Poland, Wyd. Akademii Rolniczej w Poznaniu: 19–55

    Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working 25 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, AR5:1535

    Google Scholar 

  • Ise T, Dunn AL, Wofsy SC, Moorcroft PR (2008) High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1:763–766

    Article  CAS  Google Scholar 

  • Jassey VE, Signarbieux C, Hattenschwiler S, Bragazza L, Buttler A, Delarue F, Fournier B, Gilbert D, Laggoun-Defarge F, Lara E, Mills RT, Mitchell EA, Payne RJ, Robroek BJ (2015) An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Scientific reports 5:16931

    Article  CAS  Google Scholar 

  • Jassey VEJ, Lamentowicz M, Bragazza L, Hofsommer ML, Mills RTE, Buttler A, Signarbieux C, Robroek BJM (2016) Loss of testate amoeba functional diversity with increasing frost intensity across a continental gradient reduces microbial activity in peatlands. Europ J Protistol 55(B):190–202

    Google Scholar 

  • Joosten H, Tanneberger F, Moen A (2017) Mires and peatlands of Europe. Schweizerbart Science Publishers, Germany

    Google Scholar 

  • Kajukalo K, Fialkiewicz-Koziel B, Galka M, Kolaczek P, Lamentowicz M (2016) Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data. Europ J Protistol 55:165–180

    Article  Google Scholar 

  • Keddy PA (2002) Wetland Ecology: Principles and Conservation. Cambridge University Press, UK

    Google Scholar 

  • Kettridge N, Turetsky MR, Sherwood JH, Thompson DK, Miller CA, Benscoter BW, Flannigan MD, Wotton BM, Waddington JM (2015) Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Scientific Reports 5:8063

    Article  CAS  Google Scholar 

  • Kleinen T, Brovkin V, Munhoven G (2016) Climate of the Past, Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11. Clim Past 12:2145–2160

    Article  Google Scholar 

  • Klimkowska A, Dzierża P, Kotowski W, Brzezińska K (2010) Methods of limiting willow shrub re-growth after initial removal on fen meadows. J Nat Conserv 18:12–21

    Article  Google Scholar 

  • Kotowski W, Ackermann M, Grootjans AP, Klimkowska A, Rossling H, Wheeler B (2016) Restoration of temperate fens: matching strategies with site potential. In: Bonn A, Allott T, Evans M, Joosten H (eds) Peatland Restoration and Ecosystem Services. Science, p 172–193

    Google Scholar 

  • Köchy M, Hiederer R, Freibaue A (2015) Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil. https://doi.org/10.5194/soil-1-351-2015

    Google Scholar 

  • Kuhry P (1994) The role of fire in the development of sphagnum-dominated peatlands in western boreal Canada. J Ecol 82(4):899–910

    Article  Google Scholar 

  • Kulczyński S (1949) Peatbogs of Polesie Mémoires de l ‘Académie Polonaise des Sciences et des Lettres. B Sci Nat 15:1–356

    Google Scholar 

  • Lamentowicz M, Tobolski K, Mitchell EAD (2007) Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17(8):1185–1196

    Article  Google Scholar 

  • Lamentowicz M, Milecla K, Gałka M, Cedro A, Pawytla J, Piotrowska N, Lamentowicz Ł, van der Knaap (2008) Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38:214–229

    Google Scholar 

  • Lamentowicz M, Mueller M, Gałka M, Barabach J, Milecka K, Goslar T, Binkowski M (2015) Reconstructing human impact on peatland development during the past 200 years in CE Europe through biotic proxies and X-ray tomography. Quatern Int 357:282–294

    Article  Google Scholar 

  • Lamentowicz M, Słowińska S, Słowiński M, Jassey VEJ, Chojnicki BH, Reczuga MK, Zielińska M, Marcisz K, Lamentowicz Ł, Barabach J, Samson M, Kołaczek P, Buttler A (2016) Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming. Mires and Peat 18:1–17

    Google Scholar 

  • Lappalainen E (1996) General review on world peatland and peat resources. In: Lappalainen E (ed) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyska, Finland, pp 53–56

    Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 7:3517–3530

    Google Scholar 

  • Loisel J, Yu Z, Beilman D, Philip C, Jukka A, David A, Andersson S, Fiałkiewicz-Kozieł B, Barber K, Belyea L, Bunbury J, Chambers F, Charman D, de Vleeschouwer F, Finkelstein S, Garneau M, Hendon D, Holmquist J, Hughes P, Jones M, Klein E, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Gałka M, Mathijssen P, Mauquoy D, McCarroll J, Moore T, Nichols J, O’Reilly B, Oksanen P, Peteet D, Rchard P, Robinson S, Rundgren M, Sannel B, Tuittila E-S, Turetsky M, Valiranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou W (2014) A database and synthesis of existing data for northern peatland soil properties and Holocene carbon accumulation. The Holocene 24:1028–1042

    Article  Google Scholar 

  • Maćkowiak M, Michalak A (2008) Biologia: Jedność i różnorodność. Wydawnictwo Szkolne PWN, Warszawa, pp 269–271

    Google Scholar 

  • Main Report (2007) Assessment on Peatlands, Biodiversity and Climate change, Main Report. Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen, ISBN 978-983-43751-0-2

    Google Scholar 

  • Marcisz K, Lamentowicz L, Slowinska S, Slowinski M, Muszak W, Lamentowicz M (2014) Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur J Protistol 50:445–455

    Article  Google Scholar 

  • Marcisz K, Tinner W, Colombaroli D, Kołaczek P, Słowiński M, Fiałkiewicz-Kozieł B, Łokas E, Lamentowicz M (2015) Long-term hydrological dynamics and fire history during the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quat Sci Rev 112:138–152

    Article  Google Scholar 

  • Matthews GVT (1993) The Ramsar Convention on wetlands: its history and development. Ramsar Convention Bureau, Gland, Switzerland

    Google Scholar 

  • Mauquoy D, Yeloff D (2007) Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change? Biodivers Conserv. https://doi.org/10.1007/s10531-007-9222-2

  • Mäkilä M, Saarnisto M (2008) Carbon accumulation in boreal peatlands during the holocene—impacts of climate variations. In: Strack M (ed) Peatlands and Climate Change. International Peat Society, Finland

    Google Scholar 

  • Miettinen J, Hooijer A, Vernimmen R, Liew SC, Page SE (2017) From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters 12

    Google Scholar 

  • Milecka K, Kowalewski G, Fiałkiewicz-Kozieł B, Gałka M, Lamentowicz M, Chojnicki BH, Goslar T, Barabach J (2016) Hydrological changes in the Rzecin peatland (Puszcza Notecka, Poland) induced by anthropogenic factors: Implications for mire development and carbon sequestration. The Holocene. https://doi.org/10.1177/0959683616670468

  • Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climate change on the carbon cycling of Canadian peatlands. Clim Change 40:229–245

    Article  CAS  Google Scholar 

  • Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature. https://doi.org/10.1038/nature11818

    Google Scholar 

  • Mulot M, Marcisz K, Grandgirard L, Lara E, Kosakyan A, Robroek BJ, Lamentowicz M, Payne RJ, Mitchell EA (2017) Genetic Determinism vs. Phenotypic Plasticity in Protist Morphology. The Journal of Eukaryotic Microbiology. https://doi.org/10.1111/jeu.12406

  • Natura (2000) http//:www.ec.europa.eu/environment/nature/natura2000/. Accessed on 1 Aug 2017

  • Nature protection (2017) https://pl.wikipedia.org/wiki/Ochrona_przyrody_w_Polsce. Accessed on 1 Aug 2017

  • Natural Resources Canada (2016) http://www.nrcan.gc.ca/forests/climate-change/forest-carbon/13103. Accessed on 1 Aug 2017

  • Page SE, Siegert F, Rieley JO, Boehm H-D, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. https://doi.org/10.1038/nature01131

    Google Scholar 

  • Page S, Hoscilo A, Langner A, Tansey K, Siegert F, Limin S, Rieley J (2009a) Tropical peatland fires in Southeast Asia. In: Cochrane MA (ed) Tropical fire ecology: climate change, land use, and ecosystem dynamics. Springer-Praxis Books, Heidelberg, pp 263–287

    Chapter  Google Scholar 

  • Page S, Hosciło A, Wösten H, Jauhiainen J, Silvius M, Rieley J, Ritzema H, Tansey K, Graham L, Vasander H, Limin S (2009b) Restoration ecology of lowland, tropical peatlands in southeast, asia: current knowledge and future, research directions. Ecosystems 12:888–905

    Article  CAS  Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17(2):798–818

    Article  Google Scholar 

  • Petrescu AMR, Lohila A, Tuovinen J-P, Baldocchi DD, Desai AR, Roulet NT, Vesala T, Dolman AJ, Oechel WC, Marcolla B, Friborg T, Rinne J, Matthes JH, Merbold L, Meijide A, Kiely G, Sottocornola M, Sachs T, Zona D, Varlagin A, Lai DYF, Veenendaal E, Parmentier F-JW, Skiba U, Lund M, Hensen A, van Huissteden J, Flanagan LB, Shurpali NJ, Grünwald T, Humphreys ER, Jackowicz-Korczyński M, Aurela MA, Laurila T, Grüning C, Chiara AR, Corradi CAR, Schrier-Uijl AP, Christensen TR, Tamstorf MP, Mastepanov M, Martikainen PJ, Verma SB, Bernhofer C, Cescatti A (2015) The uncertain climate footprint of wetlands under human pressure. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1416267112

    Google Scholar 

  • Postel S (1997) Last oasis: facing water scarcity. WW Norton & Co, New York, p 239

    Google Scholar 

  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The Impact of Boreal Forest Fire on Climate Warming. Science 314:1130–1132

    Article  CAS  Google Scholar 

  • Rieley JO, Ahmad-Shah A-A, Brady MA (1996) The extent and nature of tropical peat swamps. In: Maltby E, Immirzi CP, Safford RJ (eds) Tropical lowland peatlands of southeast asia. IUCN, Gland, Switzerland, pp 17–53

    Google Scholar 

  • Rooney RC, Bayley SE, Schindler DW (2011) Oil sands mining and reclamation cause massive loss of peatland and stored carbon. PNAS 109(13):4933–4937

    Article  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61(3):261–293

    Article  CAS  Google Scholar 

  • Rydin H, Jeglum JK (2013) The biology of peatlands. Oxford University Press, UK

    Book  Google Scholar 

  • Sillasoo Ü, Väliranta M, Tuittila E-S (2011) Fire history and vegetation recovery in two raised bogs at the Baltic Sea. J Veg Sci 22:1084–1093

    Article  Google Scholar 

  • Słowińska S, Słowiński M, Lamentowicz M (2010) Relationships between Local climate and hydrology in Sphagnum Mire: implications for Palaeohydrological studies and ecosystem management. Pol J Env Stud 19:779–787

    Google Scholar 

  • Strack M (2008) Peatlands and climate change. International Peat Society, Finland

    Google Scholar 

  • The Guardian (2016) https://www.theguardian.com/environment/2016/may/11/canada-wildfire-environmental-impacts-fort-mcmurray. Accessed on 5 Aug 2017

  • Tobolski K (2012) Ochrona europejskich torfowisk, Współczesne Problemy Kształtowania i Ochrony Środowiska. In: Łachacz A (ed) Monografie nr 3p, 2012 Wybrane problemy ochrony mokradeł, Olsztyn

    Google Scholar 

  • Tropical peatlands (2017) University of Helsinki. http://blogs.helsinki.fi/jyjauhia/. Accessed on 5 Aug 2017

  • Tuittila ES, Vasander H, Laine J (2000) Impact of rewetting on the vegetation of a cut-away peatland. Vegetation science. https://doi.org/10.2307/1478999

    Google Scholar 

  • Turetsky M, Wieder K, Halsey L, Vitt D (2002) Current disturbance and the diminishing peatland carbon sink. Geographical Research Letters. https://doi.org/10.1029/2001GL014000

    Google Scholar 

  • Turetsky MR, Donahue WF, Benscoter BW (2011) Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun 2:514

    Article  CAS  Google Scholar 

  • Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nature Geosci 8:11–14

    Article  CAS  Google Scholar 

  • Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. The Holocene 12(1):69–80

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys. https://doi.org/10.5194/acp-10-11707-2010

    Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B: Chemical and Physical Meteorology 53(5):521–528

    Google Scholar 

  • World Energy Council (2013) World energy resources: peat. https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_6_Peat.pdf. Accessed on 5 Aug 2017

  • Wösten JHM, Ismail AB, van Wijk ALM (1997) Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78:25–36

    Article  Google Scholar 

  • Yale Environment (2017) http://e360.yale.edu/features/can-we-discover-worlds-remaining-peatlands-in-time-to-save-them. Accessed on 5 Aug 2017

  • Yokelson RJ, Susott R, Ward DE, Reardon J, Griffith DWT (1997) Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. J Geophysical Res: Atmospheres 102(D15):18865–18877

    Article  CAS  Google Scholar 

  • Yu Z (2007) Holocene carbon accumulation of fen peatlands in Boreal Western Canada: a complex ecosystem response to climate variation and disturbance. Ecosystems. https://doi.org/10.1007/s10021-006-0174-2

    Google Scholar 

  • Yu Z, Beilman DW, Jones MC (2009) Sensitivity of Northern Peatland carbon dynamics to holocene climate change. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (eds) Carbon cycling in Northern Peatlands. American Geophysical Union, Washington, D. C. https://doi.org/10.1029/2008GM000822

  • Yu Z, Beilman DW, Frolking S, MacDonald GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. Eos, Trans Am Geophys Union 92(12):97–98

    Article  Google Scholar 

  • Yu Z, Campbell ID, Campbell C, Vitt DH, Bond GC, Apps MJ (2003) Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. The Holocene 13(6):801–808

    Article  Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Hydrology and land surface studies, global peatland dynamics since the last glacial maximum. Geophys Res Lett https://doi.org/10.1029/2010GL043584

  • Zech R, Huang Y, Zech M, Tarozo R, Zech W (2011) High carbon sequestration in Siberian permafrost loess-paleosols during glacials. Clim Past 7:501–509

    Article  Google Scholar 

  • Zerbe S, Steffenhagen P, Parakenings K, Timmermann T, Frick A, Gelbrecht J, Zak D (2013) Ecosystem service restoration after 10 Years of rewetting peatlands in NE Germany. Env Manag 51(6):1194–1209

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Swiss Contribution to the enlarged European Union (No. PSPB-013/2010) and the National Science Centre, Poland (grant No. NN306060940 and 2015/17/B/ST10/01,656) and by the Polish-Norwegian Research Programme, project ID: 203258, contract No. Pol-Nor/203258/31/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila M. Harenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harenda, K.M., Lamentowicz, M., Samson, M., Chojnicki, B.H. (2018). The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change. In: Zielinski, T., Sagan, I., Surosz, W. (eds) Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71788-3_12

Download citation

Publish with us

Policies and ethics