Advertisement

The Role of Peatlands and Their Carbon Storage Function in the Context of Climate Change

  • Kamila M. HarendaEmail author
  • Mariusz Lamentowicz
  • Mateusz Samson
  • Bogdan H. Chojnicki
Chapter
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

Peatlands are unique habitats that are covering around 3% of the land area and they are characterized by high sensitivity to climate. These very complex ecosystems impact both water and carbon cycle at local as well as global scale. Peatlands are also valuable ecosystems due to their mitigating features in terms of floods or soil erosion and they can store and filtrate water in the landscape as well. As a result of high moisture they can also gather a big amount of carbon and this ability makes peatlands climate coolers. On the other hand a stored carbon can be released into the atmosphere due to peat moisture decrease and it accelerate the global warming processes. Beside climate changes, peatlands are under pressure that is caused by human activities like land use changes or fires. Peatlands protection and restoration can both mitigate climate changes and water balance disturbances. A review of peatlands status and feature in the context of climate changes and human-induced disturbances are presented in this paper.

Keywords

Peatlands protection and restoration Carbon storage Climate change 

Notes

Acknowledgements

This work was supported by Swiss Contribution to the enlarged European Union (No. PSPB-013/2010) and the National Science Centre, Poland (grant No. NN306060940 and 2015/17/B/ST10/01,656) and by the Polish-Norwegian Research Programme, project ID: 203258, contract No. Pol-Nor/203258/31/2013.

References

  1. Abrams JF (2016) Impacts of Indonesian peatland degradation on the coastal ecosystems and the global carbon cycle. Dissertation, Jacobs University, BremenGoogle Scholar
  2. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycl 15:955–966CrossRefGoogle Scholar
  3. Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Change Biol 10:1043–1051CrossRefGoogle Scholar
  4. Benscoter BW, Greenacre D, Turetsky MR (2015) Wildfire as a key determinant of peatland microtopography. Can J For Res 45(8):1133–1137CrossRefGoogle Scholar
  5. Billett MF, Charman DJ, Clark JM, Evans CD, Evans MG, Ostle NJ, Worrall F, Burden A, Dinsmore KJ, Jones T, McNamara NP, Parry L, Rowson JG, Rose R (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Clim Res 45:13–29CrossRefGoogle Scholar
  6. Blodau C (2002) Carbon cycling in peatlands—A review of processes and controls. Env Rev 10(2):111–134CrossRefGoogle Scholar
  7. Bonn A, Allott T, Joosten H, Evans M, Stoneman R (2016) Peatland restoration and ecosystem services: science, policy and practice. Cambridge University Press, UKCrossRefGoogle Scholar
  8. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19:1325–1346CrossRefGoogle Scholar
  9. Burkett V, Kusler J (2002) Climate change: potential impacts and interactions in wetlands of the United States. JAWRA J Am Water Res Assoc 36(2):313–320CrossRefGoogle Scholar
  10. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. P Natl Acad Sci USA 104:18866–18870CrossRefGoogle Scholar
  11. Canadian University of Waterloo report (2017) http://www.intactcentreclimateadaptation.ca/wp-content/uploads/2017/07/When-the-Big-Storms-Hit.pdf. Accessed on 30 Jul 2017
  12. Charman D, Mäkilä M (2003) Climate reconstruction from peatlands. PAGES Newsletter 11:15–17Google Scholar
  13. Charman DJ, Beilman DW, Blaauw M, Booth RK, Brewer S, Chambers FM, Christen JA, Gallego-Sala A, Harrison SP, Hughes PDM, Jackson ST, Korhola A, Mauquoy D, Mitchell FJG, Prentice IC, van der Linden M, De Vleeschouwer F, Yu ZC, Alm J, Bauer IE, Corish YMC, Garneau M, Hohl V, Huang Y, Karofeld E, Le Roux G, Loisel J, Moschen R, Nichols JE, Nieminen TM, MacDonald GM, Phadtare NR, Rausch N, Sillasoo Ü, Swindles GT, Tuittila ES, Ukonmaanaho L, Väliranta M, van Bellen S, van Geel B, Vitt DH, Zhao Y (2013) Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10(2):929–944CrossRefGoogle Scholar
  14. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arrit R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, de Elia R, Dethloff K (2007) Near-term Climate Change: projections and Predictability. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, UK, p 847–940Google Scholar
  15. Christian TJ, Kleiss B, Yokelson RJ, Holzinger R, Crutzen PJ, Hao WM, Saharjo BH, Ward DE (2003) Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. J Geophys Res.  https://doi.org/10.1029/2003JD003704
  16. Clymo RS (1984) The limits to peat bog growth. Phil Trans Royal Soc London B 303:605–654CrossRefGoogle Scholar
  17. Clymo RS, Turunen J, Tolonen K (1998) Carbon Accumulation in Peatland. Oikos 81(2):368–388.  https://doi.org/10.2307/3547057 CrossRefGoogle Scholar
  18. Cox P, Jones C (2008) Illuminating the Modern Dance of Climate and CO2. Science 321:1642–1644CrossRefGoogle Scholar
  19. Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature.  https://doi.org/10.1038/nature20150 Google Scholar
  20. Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA (2017) Age extent and carbon storage of the central Congo Basin peatland complex. Nature.  https://doi.org/10.1038/nature21048 Google Scholar
  21. De Jong R, Blaauw M, Chambers FM, Christensen TR, De Vleeschouwer F, Finsinger W, Fronzek S, Johansson M, Kokfelt U, Lamentowicz M, LeRoux G, Mitchell EAD, Mauquoy D, Nichols JE, Samaritani E, van Geel B (2010) Climate and Peatlands. In: Dodson J (ed) Changing Climates, Earth Systems and Society. Series: International Year of Planet Earth. Springer, Heidelberg, p 85–121Google Scholar
  22. Dise NB (2010) Peatland response to global change. Science 326:810–811CrossRefGoogle Scholar
  23. Dise NB, Narasinha JS, Weishampel P, Verma SB, Verry ES, Gorham E, Crill PM, Harriss RC, Kelley CA, Yavitt JB, Smemo KA, Kolka RK, Smith K, Kim J, Clement RJ, Arkebauer TJ, Bartlett KB, Billesbach DP, Bridgham SD, Elling AE, Flebbe PA, King JY, Martens CS, Sebacher DI, Williams CJ, Wieder RK (2011) Carbon emissions from peatlands. Peatland Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest. CRC Press, USA, p 297–347Google Scholar
  24. Dorrepaal E, Toet S, Van logtestijn RSP, Swart E, Van De Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619Google Scholar
  25. Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Coronado ENH, Lähteenoja O, Montenegro LT, Sandoval LV, Zaráte R, Baker TR (2014) The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental Research Letters.  https://doi.org/10.1088/1748-9326/9/12/124017 Google Scholar
  26. Erwin KL (2009) Peatlands and global climate change: the role of peatland restoration in a changing world. Wetlands Ecol Manag 17:71–84CrossRefGoogle Scholar
  27. Ferretti DF, Miller JB, White JWC, Etheridge DM, Lassey KR, Lowe DC, MacFarling Meure CM, Dreier MF, Trudinger CM, van Ommen TD, Langenfelds RL (2005) Unexpected changes to the global methane budget over the past 2000 years. Science.  https://doi.org/10.1126/science.1115193 Google Scholar
  28. Flannigan M, Campbell I, Wotton M, Carcaillet C, Richard P, Bergeron Y (2001) Future fire in Canada’s boreal forest: paleoecology results and general circulation model - regional climate model simulations. Can J For Res 31:854–864CrossRefGoogle Scholar
  29. Frank DC, Esper J, Raible CC, Buntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature.  https://doi.org/10.1038/nature08769 Google Scholar
  30. Frolking SE, Bubier JL, Moore TR, Ball T, Bellisario LM, Bhardwaj A, Carroll P, Crill PM, Lafleur PM, McCaughey JH, Roulet NT, Suyker AE, Verma SB, Waddington JM, Whiting GJ (1998) Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Glob Biogeochem Cycl 12(1):115–126CrossRefGoogle Scholar
  31. Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N (2011) Peatlands in the Earth’s 21st century climate system. Env Rev 19:371–396.  https://doi.org/10.1139/a11-014 CrossRefGoogle Scholar
  32. Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, Fiore-Donno AM, Heger TJ, Jassey VEJ, Krashevska V, Lahr DJG, Marcisz K, Mulot M, Payne R, Singer D, Anderson OR, Charman DJ, Ekelund F, Griffiths BS, Rønn R, Smirnov A, Bass D, Belbahri L, Berney C, Blandenier Q, Chatzinotas A, Clarholm M, Dunthorn M, Feest A, Fernández LD, Foissner W, Fournier B, Gentekaki E, Hájek M, Helder J, Jousset A, Koller R, Kumar S, La Terza A, Lamentowicz M, Mazei Y, Santos SS, Seppey CVW, Spiegel FW, Walochnik J, Winding A, Lara E (2017) Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem 111:94–103CrossRefGoogle Scholar
  33. Glińska-Lewczuk K, Burandt P, Łaźniewska I, Łaźniewski J, Menderski S, Pisarek W (2014) Ochrona i renaturyzacja torfowisk wysokich w rezerwatach Gązwa, Zielony Mechacz i Sołtysek w północno-wschodniej Polsce. Wydawnictwo Polskiego Towarzystwa Ochrony Ptaków, BiałowieżaGoogle Scholar
  34. Gorham E (1991) Northern peatlands: role in the carbon cycle and probably responses to climate warming. Ecol Appl.  https://doi.org/10.2307/1941811 Google Scholar
  35. Hamada Y, Darung U, Limin SH, Hatano R (2013) Characteristics of the fire-generated gas emission observed during a large peatland fire in 2009 at Kalimantan, Indonesia. Atmos Environ 74:177–181CrossRefGoogle Scholar
  36. Hedberg P, Saetre P, Sundberg S, Rydin H, Kotowski W (2013) A functional trait approach to fen restoration analysis. Appl Veg Sci 16:658–666CrossRefGoogle Scholar
  37. Herbichowa M (2007) Eksperymentalna reintrodukcja gatunków z rodzaju Sphagnum. In: Herbichowa M, Pawlaczyk P, Stańko R (eds) Ochrona wysokich torfowisk batyckich na Pomorzu. Doświadczenia i rezultaty projektu LIFE 04/NAT/PL/00208 PLB BOGS. Wyd. Klub Przyrodników, Świebodzin, p 128–130Google Scholar
  38. Higuera PE (2015) Taking time to consider the causes and consequences of large wildfires. Proc Natl Acad Sci USA 112:13137–13138CrossRefGoogle Scholar
  39. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7(5):1505–1514CrossRefGoogle Scholar
  40. Ilnicki P, Iwaniszyniec P (2002) Emmisions of greenhouse gases (GHG) from peatland in Restoration of carbon sequestrating capacity and biodiversity in abandoned grassland on peatland in Poland, Wyd. Akademii Rolniczej w Poznaniu: 19–55Google Scholar
  41. IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working 25 Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, AR5:1535Google Scholar
  42. Ise T, Dunn AL, Wofsy SC, Moorcroft PR (2008) High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1:763–766CrossRefGoogle Scholar
  43. Jassey VE, Signarbieux C, Hattenschwiler S, Bragazza L, Buttler A, Delarue F, Fournier B, Gilbert D, Laggoun-Defarge F, Lara E, Mills RT, Mitchell EA, Payne RJ, Robroek BJ (2015) An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Scientific reports 5:16931CrossRefGoogle Scholar
  44. Jassey VEJ, Lamentowicz M, Bragazza L, Hofsommer ML, Mills RTE, Buttler A, Signarbieux C, Robroek BJM (2016) Loss of testate amoeba functional diversity with increasing frost intensity across a continental gradient reduces microbial activity in peatlands. Europ J Protistol 55(B):190–202Google Scholar
  45. Joosten H, Tanneberger F, Moen A (2017) Mires and peatlands of Europe. Schweizerbart Science Publishers, GermanyGoogle Scholar
  46. Kajukalo K, Fialkiewicz-Koziel B, Galka M, Kolaczek P, Lamentowicz M (2016) Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data. Europ J Protistol 55:165–180CrossRefGoogle Scholar
  47. Keddy PA (2002) Wetland Ecology: Principles and Conservation. Cambridge University Press, UKGoogle Scholar
  48. Kettridge N, Turetsky MR, Sherwood JH, Thompson DK, Miller CA, Benscoter BW, Flannigan MD, Wotton BM, Waddington JM (2015) Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Scientific Reports 5:8063CrossRefGoogle Scholar
  49. Kleinen T, Brovkin V, Munhoven G (2016) Climate of the Past, Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian and Marine Isotope Stage (MIS) 11. Clim Past 12:2145–2160CrossRefGoogle Scholar
  50. Klimkowska A, Dzierża P, Kotowski W, Brzezińska K (2010) Methods of limiting willow shrub re-growth after initial removal on fen meadows. J Nat Conserv 18:12–21CrossRefGoogle Scholar
  51. Kotowski W, Ackermann M, Grootjans AP, Klimkowska A, Rossling H, Wheeler B (2016) Restoration of temperate fens: matching strategies with site potential. In: Bonn A, Allott T, Evans M, Joosten H (eds) Peatland Restoration and Ecosystem Services. Science, p 172–193Google Scholar
  52. Köchy M, Hiederer R, Freibaue A (2015) Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil.  https://doi.org/10.5194/soil-1-351-2015 Google Scholar
  53. Kuhry P (1994) The role of fire in the development of sphagnum-dominated peatlands in western boreal Canada. J Ecol 82(4):899–910CrossRefGoogle Scholar
  54. Kulczyński S (1949) Peatbogs of Polesie Mémoires de l ‘Académie Polonaise des Sciences et des Lettres. B Sci Nat 15:1–356Google Scholar
  55. Lamentowicz M, Tobolski K, Mitchell EAD (2007) Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17(8):1185–1196CrossRefGoogle Scholar
  56. Lamentowicz M, Milecla K, Gałka M, Cedro A, Pawytla J, Piotrowska N, Lamentowicz Ł, van der Knaap (2008) Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38:214–229Google Scholar
  57. Lamentowicz M, Mueller M, Gałka M, Barabach J, Milecka K, Goslar T, Binkowski M (2015) Reconstructing human impact on peatland development during the past 200 years in CE Europe through biotic proxies and X-ray tomography. Quatern Int 357:282–294CrossRefGoogle Scholar
  58. Lamentowicz M, Słowińska S, Słowiński M, Jassey VEJ, Chojnicki BH, Reczuga MK, Zielińska M, Marcisz K, Lamentowicz Ł, Barabach J, Samson M, Kołaczek P, Buttler A (2016) Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming. Mires and Peat 18:1–17Google Scholar
  59. Lappalainen E (1996) General review on world peatland and peat resources. In: Lappalainen E (ed) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyska, Finland, pp 53–56Google Scholar
  60. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 7:3517–3530Google Scholar
  61. Loisel J, Yu Z, Beilman D, Philip C, Jukka A, David A, Andersson S, Fiałkiewicz-Kozieł B, Barber K, Belyea L, Bunbury J, Chambers F, Charman D, de Vleeschouwer F, Finkelstein S, Garneau M, Hendon D, Holmquist J, Hughes P, Jones M, Klein E, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Gałka M, Mathijssen P, Mauquoy D, McCarroll J, Moore T, Nichols J, O’Reilly B, Oksanen P, Peteet D, Rchard P, Robinson S, Rundgren M, Sannel B, Tuittila E-S, Turetsky M, Valiranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou W (2014) A database and synthesis of existing data for northern peatland soil properties and Holocene carbon accumulation. The Holocene 24:1028–1042CrossRefGoogle Scholar
  62. Maćkowiak M, Michalak A (2008) Biologia: Jedność i różnorodność. Wydawnictwo Szkolne PWN, Warszawa, pp 269–271Google Scholar
  63. Main Report (2007) Assessment on Peatlands, Biodiversity and Climate change, Main Report. Global Environment Centre, Kuala Lumpur & Wetlands International, Wageningen, ISBN 978-983-43751-0-2Google Scholar
  64. Marcisz K, Lamentowicz L, Slowinska S, Slowinski M, Muszak W, Lamentowicz M (2014) Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur J Protistol 50:445–455CrossRefGoogle Scholar
  65. Marcisz K, Tinner W, Colombaroli D, Kołaczek P, Słowiński M, Fiałkiewicz-Kozieł B, Łokas E, Lamentowicz M (2015) Long-term hydrological dynamics and fire history during the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quat Sci Rev 112:138–152CrossRefGoogle Scholar
  66. Matthews GVT (1993) The Ramsar Convention on wetlands: its history and development. Ramsar Convention Bureau, Gland, SwitzerlandGoogle Scholar
  67. Mauquoy D, Yeloff D (2007) Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change? Biodivers Conserv.  https://doi.org/10.1007/s10531-007-9222-2
  68. Mäkilä M, Saarnisto M (2008) Carbon accumulation in boreal peatlands during the holocene—impacts of climate variations. In: Strack M (ed) Peatlands and Climate Change. International Peat Society, FinlandGoogle Scholar
  69. Miettinen J, Hooijer A, Vernimmen R, Liew SC, Page SE (2017) From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters 12Google Scholar
  70. Milecka K, Kowalewski G, Fiałkiewicz-Kozieł B, Gałka M, Lamentowicz M, Chojnicki BH, Goslar T, Barabach J (2016) Hydrological changes in the Rzecin peatland (Puszcza Notecka, Poland) induced by anthropogenic factors: Implications for mire development and carbon sequestration. The Holocene.  https://doi.org/10.1177/0959683616670468
  71. Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climate change on the carbon cycling of Canadian peatlands. Clim Change 40:229–245CrossRefGoogle Scholar
  72. Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature.  https://doi.org/10.1038/nature11818 Google Scholar
  73. Mulot M, Marcisz K, Grandgirard L, Lara E, Kosakyan A, Robroek BJ, Lamentowicz M, Payne RJ, Mitchell EA (2017) Genetic Determinism vs. Phenotypic Plasticity in Protist Morphology. The Journal of Eukaryotic Microbiology.  https://doi.org/10.1111/jeu.12406
  74. Natura (2000) http//:www.ec.europa.eu/environment/nature/natura2000/. Accessed on 1 Aug 2017
  75. Nature protection (2017) https://pl.wikipedia.org/wiki/Ochrona_przyrody_w_Polsce. Accessed on 1 Aug 2017
  76. Natural Resources Canada (2016) http://www.nrcan.gc.ca/forests/climate-change/forest-carbon/13103. Accessed on 1 Aug 2017
  77. Page SE, Siegert F, Rieley JO, Boehm H-D, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature.  https://doi.org/10.1038/nature01131 Google Scholar
  78. Page S, Hoscilo A, Langner A, Tansey K, Siegert F, Limin S, Rieley J (2009a) Tropical peatland fires in Southeast Asia. In: Cochrane MA (ed) Tropical fire ecology: climate change, land use, and ecosystem dynamics. Springer-Praxis Books, Heidelberg, pp 263–287CrossRefGoogle Scholar
  79. Page S, Hosciło A, Wösten H, Jauhiainen J, Silvius M, Rieley J, Ritzema H, Tansey K, Graham L, Vasander H, Limin S (2009b) Restoration ecology of lowland, tropical peatlands in southeast, asia: current knowledge and future, research directions. Ecosystems 12:888–905CrossRefGoogle Scholar
  80. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17(2):798–818CrossRefGoogle Scholar
  81. Petrescu AMR, Lohila A, Tuovinen J-P, Baldocchi DD, Desai AR, Roulet NT, Vesala T, Dolman AJ, Oechel WC, Marcolla B, Friborg T, Rinne J, Matthes JH, Merbold L, Meijide A, Kiely G, Sottocornola M, Sachs T, Zona D, Varlagin A, Lai DYF, Veenendaal E, Parmentier F-JW, Skiba U, Lund M, Hensen A, van Huissteden J, Flanagan LB, Shurpali NJ, Grünwald T, Humphreys ER, Jackowicz-Korczyński M, Aurela MA, Laurila T, Grüning C, Chiara AR, Corradi CAR, Schrier-Uijl AP, Christensen TR, Tamstorf MP, Mastepanov M, Martikainen PJ, Verma SB, Bernhofer C, Cescatti A (2015) The uncertain climate footprint of wetlands under human pressure. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1416267112 Google Scholar
  82. Postel S (1997) Last oasis: facing water scarcity. WW Norton & Co, New York, p 239Google Scholar
  83. Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The Impact of Boreal Forest Fire on Climate Warming. Science 314:1130–1132CrossRefGoogle Scholar
  84. Rieley JO, Ahmad-Shah A-A, Brady MA (1996) The extent and nature of tropical peat swamps. In: Maltby E, Immirzi CP, Safford RJ (eds) Tropical lowland peatlands of southeast asia. IUCN, Gland, Switzerland, pp 17–53Google Scholar
  85. Rooney RC, Bayley SE, Schindler DW (2011) Oil sands mining and reclamation cause massive loss of peatland and stored carbon. PNAS 109(13):4933–4937CrossRefGoogle Scholar
  86. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61(3):261–293CrossRefGoogle Scholar
  87. Rydin H, Jeglum JK (2013) The biology of peatlands. Oxford University Press, UKCrossRefGoogle Scholar
  88. Sillasoo Ü, Väliranta M, Tuittila E-S (2011) Fire history and vegetation recovery in two raised bogs at the Baltic Sea. J Veg Sci 22:1084–1093CrossRefGoogle Scholar
  89. Słowińska S, Słowiński M, Lamentowicz M (2010) Relationships between Local climate and hydrology in Sphagnum Mire: implications for Palaeohydrological studies and ecosystem management. Pol J Env Stud 19:779–787Google Scholar
  90. Strack M (2008) Peatlands and climate change. International Peat Society, FinlandGoogle Scholar
  91. Tobolski K (2012) Ochrona europejskich torfowisk, Współczesne Problemy Kształtowania i Ochrony Środowiska. In: Łachacz A (ed) Monografie nr 3p, 2012 Wybrane problemy ochrony mokradeł, OlsztynGoogle Scholar
  92. Tropical peatlands (2017) University of Helsinki. http://blogs.helsinki.fi/jyjauhia/. Accessed on 5 Aug 2017
  93. Tuittila ES, Vasander H, Laine J (2000) Impact of rewetting on the vegetation of a cut-away peatland. Vegetation science.  https://doi.org/10.2307/1478999 Google Scholar
  94. Turetsky M, Wieder K, Halsey L, Vitt D (2002) Current disturbance and the diminishing peatland carbon sink. Geographical Research Letters.  https://doi.org/10.1029/2001GL014000 Google Scholar
  95. Turetsky MR, Donahue WF, Benscoter BW (2011) Experimental drying intensifies burning and carbon losses in a northern peatland. Nat Commun 2:514CrossRefGoogle Scholar
  96. Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nature Geosci 8:11–14CrossRefGoogle Scholar
  97. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. The Holocene 12(1):69–80CrossRefGoogle Scholar
  98. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys.  https://doi.org/10.5194/acp-10-11707-2010 Google Scholar
  99. Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B: Chemical and Physical Meteorology 53(5):521–528Google Scholar
  100. World Energy Council (2013) World energy resources: peat. https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_6_Peat.pdf. Accessed on 5 Aug 2017
  101. Wösten JHM, Ismail AB, van Wijk ALM (1997) Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78:25–36CrossRefGoogle Scholar
  102. Yokelson RJ, Susott R, Ward DE, Reardon J, Griffith DWT (1997) Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. J Geophysical Res: Atmospheres 102(D15):18865–18877CrossRefGoogle Scholar
  103. Yu Z (2007) Holocene carbon accumulation of fen peatlands in Boreal Western Canada: a complex ecosystem response to climate variation and disturbance. Ecosystems.  https://doi.org/10.1007/s10021-006-0174-2 Google Scholar
  104. Yu Z, Beilman DW, Jones MC (2009) Sensitivity of Northern Peatland carbon dynamics to holocene climate change. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (eds) Carbon cycling in Northern Peatlands. American Geophysical Union, Washington, D. C.  https://doi.org/10.1029/2008GM000822
  105. Yu Z, Beilman DW, Frolking S, MacDonald GM, Roulet NT, Camill P, Charman DJ (2011) Peatlands and their role in the global carbon cycle. Eos, Trans Am Geophys Union 92(12):97–98CrossRefGoogle Scholar
  106. Yu Z, Campbell ID, Campbell C, Vitt DH, Bond GC, Apps MJ (2003) Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. The Holocene 13(6):801–808CrossRefGoogle Scholar
  107. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Hydrology and land surface studies, global peatland dynamics since the last glacial maximum. Geophys Res Lett  https://doi.org/10.1029/2010GL043584
  108. Zech R, Huang Y, Zech M, Tarozo R, Zech W (2011) High carbon sequestration in Siberian permafrost loess-paleosols during glacials. Clim Past 7:501–509CrossRefGoogle Scholar
  109. Zerbe S, Steffenhagen P, Parakenings K, Timmermann T, Frick A, Gelbrecht J, Zak D (2013) Ecosystem service restoration after 10 Years of rewetting peatlands in NE Germany. Env Manag 51(6):1194–1209CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kamila M. Harenda
    • 1
    Email author
  • Mariusz Lamentowicz
    • 2
    • 3
  • Mateusz Samson
    • 1
  • Bogdan H. Chojnicki
    • 1
  1. 1.Meteorology DepartmentPoznan University of Life SciencesPoznańPoland
  2. 2.Department of Biogeography and Palaeoecology, Faculty of Geographical and Geological SciencesAdam Mickiewicz UniversityPoznańPoland
  3. 3.Laboratory of Wetland Ecology and Monitoring, Faculty of Geographical and Geological SciencesAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations