Skip to main content
Log in

Ecosystem Service Restoration after 10 Years of Rewetting Peatlands in NE Germany

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The restoration of ecosystem services, i.e., production, regulation, and information, is a global challenge, which the federal state of Mecklenburg-Vorpommern in NE Germany addressed in 2000 by rewetting over 20,000 ha of degraded peatlands within the Mire Restoration Program. We evaluated ecosystem services in 23 rewetted sites by assessing the following mire parameters within a ten year period: (a) dominant vegetation at the ecosystem level, (b) peat formation potential at the landscape level, and (c) aboveground biomass and nutrient levels. Seven to 10 years after rewetting, the wetlands formed a mosaic of vegetation types with the highest potential for peat formation and several dominant, peat-forming species accumulated high levels of aboveground biomass and nutrients (C, N, P). Common reed (Phragmites australis) accumulated the most biomass (up to 24 t dry matter/ha), and N+P during the growing season. A future management option is to annually harvest aquatic and wetland plants to reduce nutrient levels in restored mire ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez JA, Bécares E (2006) Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecol Eng 28:99–105

    Article  Google Scholar 

  • Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol Evol 14:63–68

    Article  Google Scholar 

  • Baratieri M, Patuzzi F, Thevs N, Zerbe S (2011) Assessment of suitable energy conversion scenarios of common reeds, Phragmites australis. In: Proceedings of the 19th European biomass conference and exhibition, Berlin. pp 1501–1514. doi:10.5071/19thEUBCE2011-VP2.3.38

  • Berg C, Dengler J, Abdank A, Isermann M (eds) (2004) Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Weissdorn, Jena

    Google Scholar 

  • Bernard JM, Hankinson G (1979) Seasonal changes in standing crop, primary production and nutrient levels in a Carex rostrata wetland. Oikos 32:328–336

    Article  Google Scholar 

  • Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, Carr J, Clayton S, Dahm C, Follstad-Shah J, Galat D, Gloss S, Goodwin P, Hart D, Hassett B, Jenkinson R, Katz S, Kondolf GM, Lake PS, Lave R, Meyer JL, O’Donnell TK, Pagano L, Powell B, Sudduth E (2005) Synthesizing U.S. river restoration efforts. Science 308:636–637

    Article  CAS  Google Scholar 

  • Bonnett SAF, Ross S, Linstead C, Maltby E (2009) A review of techniques for monitoring the success of peatland restoration. University of Liverpool. Natural England Commissioned Reports 86, pp 189

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388

    Article  Google Scholar 

  • Coops H, Boeters R, Smit H (2003) Direct and indirect effects of wave attack on helophytes. Aquat Botany 41:333–352

    Article  Google Scholar 

  • Dong Z, Chen G, He X, Han Z, Wang X (2004) Controlling blown sand along the highway crossing the Taklimakan desert. J Arid Environ 57:329–344

    Article  Google Scholar 

  • Edwards PJ, Abivardi C (1997) Ecological engineering and sustainable development. In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 325–352

    Google Scholar 

  • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Machine learning: proceedings of the thirteenth international conference, 3–6 July 1996, Bari. pp. 148–156

  • Frick A, Steffenhagen P, Zerbe S, Timmermann T, Schulz K (2011) Monitoring of the vegetation composition in rewetted peatland with iterative decision tree classification of satellite imagery. Photogramm Fernerkund Geoinf 3:109–122

    Article  Google Scholar 

  • Granéli W (1984) Reed Phragmites australis (Cav.) Trin. ex Steudel as an energy source in Sweden. Biomass 4:183–208

    Article  Google Scholar 

  • Greenway M, Woolley A (2001) Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia. Water Sci Techn 44:303–310

    CAS  Google Scholar 

  • Gumbricht T (1993) Nutrient removal processes in freshwater submersed macrophytes systems. Ecol Eng 2:1–30

    Article  Google Scholar 

  • Hahn-Schöfl M, Zak D, Minke M, Gelbrecht J, Augustin J, Freibauer A (2011) Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences 8:1539–1550

    Article  Google Scholar 

  • Hansson P, Fredriksson H (2004) Use of summer harvested common reed (Phragmites australis) as nutrient source for organic crop production in Sweden. Agric Ecosyst Environ 102:365–375

    Article  Google Scholar 

  • Hartmann M (1999) To the roots of peat formation: production and decomposition processes in a fen. Diss. Univ Greifswald, Greifswald

    Google Scholar 

  • Hoagland CR, Lowell EG, David MB (2001) Plant nutrient uptake and biomass accumulation in a constructed wetland. J Freshw Ecol 16:527–540

    Article  CAS  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson D, Sanderson EW, Valladares F, Vilá M, Zamora R, Zobel M (2006) Emerging novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Holden J, Chapman PJ, Labadz JC (2004) Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog Phys Geogr 28:95–123

    Article  Google Scholar 

  • Hölzel N, with contributions from Rebele F, Rosenthal G, Eichberg C (2009) Ökologische Grundlagen und limitierende Faktoren der Renaturierung. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer, pp 23–53

  • Jansen F, Zerbe S, Succow M (2009) Changes in landscape naturalness derived from a historical land register: a case study from NE Germany. Landsc Ecol 24:185–198

    Article  Google Scholar 

  • Kätterer T, Andrén O (1999) Growth dynamics of reed canary grass (Phalaris arundinacea L.) and its allocation of biomass and nitrogen below ground in a field receiving daily irrigation and fertilisation. Nutr Cycl Agroecosyst 54:21–29

    Article  Google Scholar 

  • Ketcheson SJ, Price JS (2011) The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands: doi:10.1007/s13157-011-0241-0

  • Koska I (2001) Ökohydrologische Kennzeichnung von Moorstandorten. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, pp 92–111

    Google Scholar 

  • Kvĕt J, Husák Š (1978) Primary data on biomass and production estimates in typical stands of fishpond littoral plant communities. In: Dykyjová D, Kvĕt J (eds) Pond littoral ecosystems: structure and functioning. Springer, New York, pp 211–216

    Google Scholar 

  • Maltby E (1997) Wetland soils: a perspective on scientific and management challenges. Seesoils J 12:4–12

    Google Scholar 

  • Mitsch JW, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • MUNLV (Ministerium für Umwelt und Naturschutz, Landwirtschaft und VerbraucherschutzdesLandes Nordrhein-Westfalen) (2005) Erfolgskontrolle von Maßnahmen zur Unterhaltung und zum naturnahen Ausbau von Gewässern. Düsseldorf

  • Odonk JP, Kvĕt J (1978) Selection of sampling areas in assessment of production. In: Dykyjová D, Kvĕt J (eds) Pond littoral ecosystems: structure and functioning. Springer, New York, pp 163–174

    Google Scholar 

  • Oswit J, Pacowski R, Zurek S (1976) Characteristics of more important peat species in Poland. In: Peatlands and their utilization in Poland, V. International Peat Congress Poznan. NOT, Warsaw, pp 51–60

  • Price JS, Rochefort L, Campeau S (2002) Use of shallow basins to restore cutover peatlands: hydrology. Rest Ecol 10:259–266

    Article  Google Scholar 

  • Price JS, Heathwaite AL, Baird AJ (2003) Hydrological processes in abandoned and restored peatlands: an overview of management approaches. Wetlands Ecol Manage 11:65–83

    Article  CAS  Google Scholar 

  • Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo

  • Rothmaler W, Jäger E, Werner K (eds) (2005) Exkursionsflora von Deutschland, Band 4. Gefäßpflanzen: Kritischer Band, 10th edn. Elsevier, München

    Google Scholar 

  • Schulz K, Timmermann T, Steffenhagen P, Zerbe S, Succow M (2011) The effect of flooding on carbon and nutrient standing stocks of helophyte biomass in rewetted fens. Hydrobiologia. doi:10.1007/s10750-011-0782-5

    Google Scholar 

  • Society for Ecological Restoration International (2004) The SER International Primer on Ecological Restoration. Version 2. http://www.ser.org/content/ecological_restoration_primer.asp

  • Steffenhagen P, Timmermann T, Schulz K, Zerbe S (2008) Biomasseproduktion sowie Kohlenstoff- und Nährstoffspeicherung durch Sumpfpflanzen (Helophyten) und Wasserpflanzen (Hydrophyten). In: Gelbrecht, Zak D, Augustin J (eds) Phosphor- und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern—Status, Steuergrößen und Handlungsmöglichkeiten. Ber IGB 26:145–150

  • Steffenhagen P, Zerbe S, Frick A, Schulz K, Timmermann T (2010) Wiederherstellung von Ökosystemleistungen der Flusstalmoore in Mecklenburg-Vorpommern. Natursch Landschaftspl 42:304–311

    Google Scholar 

  • Steffenhagen P, Zak D, Schulz K, Timmermann T, Zerbe S (2012) Biomass and nutrient stock of submersed and floating macrophytes in shallow lakes formed by rewetting of degraded fens. Hydrobiologia 692:99–109

    Article  CAS  Google Scholar 

  • Succow M, Joosten H (eds) (2001) Landschaftsökologische Moorkunde, 2nd edn. Schweizerbart, Stuttgart

    Google Scholar 

  • Tanneberger F, Tegetmeyer C, Dylawerski M, Flade M, Joosten H (2009) Commercially cut reed as a new and sustainable habitat for the globally threatened Aquatic Warbler. Biodiv Conserv 18:1475–1489

    Article  Google Scholar 

  • Timmermann T, Margoczi K, Takács G, Vegelin K (2006) Restoration of peat-forming species-poor fen grasslands. Appl Veg Sci 9:241–250

    Article  Google Scholar 

  • Timmermann T, Joosten H, Succow M (2009) Restaurierung von Mooren. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer, Stuttgart, pp 55–93

    Chapter  Google Scholar 

  • Van Andel J, Aronson J (2006) Restoration ecology: the new frontier. Wiely-Blackwell, Oxford

    Google Scholar 

  • Van der Steen P, Brenner A, Oron G (1998) An integrated duckweed and algae pond system for nitrogen removal and renovation. Water Sci Tech 38:335–343

    Article  Google Scholar 

  • Verhoeven JTA, Van der Toorn J (1990) Marsh eutrophication and wastewater treatment. In Patten BC (ed) Wetlands and shallow continental water bodies. Case studies, vol. 1, SPB Academic Publishing, The Hague, pp 571–585

  • Westlake DF (1966) Biomass and productivity of Glyceria maxima—seasonal changes in biomass. J Ecol 54:745

    Article  Google Scholar 

  • Zak D, Gelbrecht J, Wagner C, Payer B, Augustin J (2010) Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecol Appl 20:1336–1349

    Article  Google Scholar 

  • Zerbe S, Thevs N (2011) Restoring Central Asian floodplain ecosystems as natural capital and cultural heritage in a continental desert environment. In: Hong S-K, Wu J, Kim J-E, Nakagoshi N (eds) Landscape ecology in Asian cultures., Ecological Research MonographsSpringer, Dordrecht, pp 277–297

    Chapter  Google Scholar 

  • Zerbe S, Wiegleb G (eds) (2009) Renaturierung von Ökosystemen in Mitteleuropa. Springer, Stuttgart

    Google Scholar 

Download references

Acknowledgments

This assessment of restoration success was based on single studies kindly supported by the Landesamt für Umwelt, Naturschutz und Geologie in Mecklenburg-Vorpommern (LUNG MV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zerbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerbe, S., Steffenhagen, P., Parakenings, K. et al. Ecosystem Service Restoration after 10 Years of Rewetting Peatlands in NE Germany. Environmental Management 51, 1194–1209 (2013). https://doi.org/10.1007/s00267-013-0048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0048-2

Keywords

Navigation