Skip to main content

Impedance Control in the Rehabilitation Robotics

  • Conference paper
  • First Online:
Advanced Technologies, Systems, and Applications II (IAT 2017)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 28))

Abstract

Physical interactions between patients and therapists during rehabilitation have served as motivation for the design of rehabilitation robots, yet there is a lack in fundamental understanding of the principles governing such human-human interactions. Review of the literature posed important open questions regarding sensorimotor interaction during human-human interactions that could facilitate the design of human-robot interactions and haptic interfaces for rehabilitation. The goal is to use the leading principles of the human-human interaction in order to define a way in which people could be in contact with robots in a more intuitive and biologically inspired way. The proposed hybrid impedance control solves the robot–environment contact problem and offers a possible solution for the rehabilitation robot interaction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jarrassé, N., Charalambous, T., Burdet, E.: A framework to describe, analyze and generate interactive motor behaviors. PLoS ONE 7, 1–13 (2012)

    Article  Google Scholar 

  2. Galvez, J.A., Kerdanyan, G., Maneekobkunwong, S., Weber, R., Scott, M., Harkema, S.J., Reinkensmeyer, D.J.: “Measuring Human Trainers” skill for the design of better robot control algorithms for gait training after spinal cord injury. In: Proceedings of the IEEE Conference on Rehabilitation Robotics, pp. 231–234 (2005)

    Google Scholar 

  3. Ikeura, R., Morita, A., Mizutani, K.: Variable-damping characteristics in carrying an object by two humans. In: Proceedings of the IEEE International Workshop on Robot and Human Communication, pp. 130–134 (1997)

    Google Scholar 

  4. Rehabilitation, World Health Organization. http://www.who.int/topics/rehabilitation/en/. Accessed 19 Feb 2016

  5. Díaz, I., Gil, J.J., Sánchez, E.: Lower-limb robotic rehabilitation: literature review and challenges. J Robot. 759–764 (2011). https://doi.org/10.1155/2011/759764

  6. Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)

    Article  Google Scholar 

  7. Basteris, A., Nijenhuis, S.M., Stienen, A.H., Buurke, J.H., Prange, G.B., Amirabdollahian, F.: Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 11, 111 (2014)

    Article  Google Scholar 

  8. Romer, G.R.B.E., Stuyt, H.J.A., Peters, A.: Cost-savings and economic benefits due to the assistive robotic manipulator (ARM). Conf. Proc IEEE Rehabil Robot. 1, 201–204 (2005)

    Google Scholar 

  9. Bemelmans, R., Gelderblom, G.J., Jonker, P., de Witte, L.: Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J. Am. Med. Dir. Assoc. 13(2), 114–120 (2012)

    Article  Google Scholar 

  10. Armeo therapy. https://www.hocoma.com/usa/us/products/armeo/. Accessed 19 Feb 2016

  11. Hocoma product overview, Hocoma. https://www.hocoma.com/usa/us/products/. Accessed 19 Feb 2016

  12. Reha technology product. http://www.rehatechnology.com/products.html. Accessed 19 Feb 2016

  13. Motorika product, Motorika. http://www.motorika.com/?categoryId=90219. Accessed 19 Feb 2016

  14. Tyrosolution, Tyromotion. http://tyromotion.com/en/products. Accessed 19 Feb 2016

  15. Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., Meeusen, R.: Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1128–1137 (2014)

    Article  Google Scholar 

  16. Alamdari, A., Krovi, V.: Robotic physical exercise and system. Biomed. Eng. Lett. 6(1–9), 9 (2016)

    Google Scholar 

  17. (ROPES): A cable-driven robotic rehabilitation system for lower-extremity motor therapy. In: Conference Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1, pp. 1–10 (2015)

    Google Scholar 

  18. Li, J., Zheng, R., Zhang, Y., Yao, J.: iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation. Conf. Proc. IEEE Rehabil. Robot. 1, 1–6 (2011)

    Google Scholar 

  19. Casadio, M., Sanguineti, V., Morasso, P.G., Arrichiello, V.: Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol. Health Care 14(3), 123–142 (2006)

    Google Scholar 

  20. Huang, F.C., Patton, J.L., Mussa-Ivaldi, F.A.: Negative viscosity can enhance learning of inertial dynamics. Conf. Proc. IEEE Rehabil. Robot. 1, 474–479 (2009)

    Google Scholar 

  21. Proficio, Barrett Medical. http://www.barrettmedical.com/. Accessed 19 Feb 2016

  22. Jung, H., Han, J., Kim, C.Y., Chun, K.J., Jung, D., Kim, J.S., Lim, D.: Characteristics of center of body mass trajectory and lower extremity joint motion responded by dynamic motions of balance training system. Biomed. Eng. Lett. 5(2), 92–97 (2015)

    Article  Google Scholar 

  23. Biswas, D., Cranny, A., Rahim, A.F., Gupta, N., Maharatna, K., Harris, N.R., Ortmann, S.: On the data analysis for classification of elementary upper limb movements. Biomed. Eng. Lett. 4(4), 403–413 (2014)

    Article  Google Scholar 

  24. Parra-Dominguez, G.S., Snoek, J., Taati, B., Mihailidis, A.: Lower body motion analysis to detect falls and near falls on stairs. Biomed Eng Lett. 5(2), 98–108 (2015)

    Article  Google Scholar 

  25. Jensen, U., Leutheuser, H., Hofmann, S., Schuepferling, B., Suttner, G., Seiler, K., Kornhuber, J., Eskofier, B.M.: A wearable real-time activity tracker. Biomed. Eng. Lett. 5(2), 147–157 (2015)

    Article  Google Scholar 

  26. Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disabil. Rehabil. Assist. Technol. 4, 1–13 (2015)

    Google Scholar 

  27. Benson, I., Hart, K., Tussler, D., van Middendorp, J.J.: Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin. Rehabil. 30(1), 73–84 (2016)

    Article  Google Scholar 

  28. Asselin, P., Knezevic, S., Kornfeld, S., Cirnigliaro, C., Agranova-Breyter, I., Bauman, W.A., Spungen, A.M.: Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J. Rehabil. Res. Dev. 52(2), 147–158 (2015)

    Article  Google Scholar 

  29. Kozlowski, A.J., Bryce, T.N., Dijkers, M.P.: Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top. Spinal Cord Inj. Rehabil. 21(2), 110–121 (2015)

    Article  Google Scholar 

  30. Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., Farris, R.: Mobility outcomes following five training sessions with a powered exoskeleton. Top. Spinal Cord Inj. Rehabil. 21(2), 93–99 (2015)

    Article  Google Scholar 

  31. Waldron, K., Schmiedeler, J.: Kinematics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 9–33. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Siciliano, B., Villani, L.: Robot Force Control, volume 540 of The Springer International Series in Engineering and Computer Science. Springer US (1999)

    Google Scholar 

  33. Villani, L., de Schutter, J.: Force control. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 161–187. Springer (2008)

    Google Scholar 

  34. Hogan, N.: Impedance control: an approach to manipulation: Part I—Theory. J. Dyn. Syst. Meas. Contr. 107(1), 1–7 (1985)

    Article  MATH  Google Scholar 

  35. Salisbury, J.K.: Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 95–100 (1980)

    Google Scholar 

  36. Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control 103(2), 126–133 (1981)

    Article  Google Scholar 

  37. de Schutter, J., Van Brussel, H.: Compliant robot motion II. A control approach based on external control loops. Int. J. Robot. Res. 7(4), 18–33 (1988)

    Article  Google Scholar 

  38. Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of robotic manipulators. IEEE Trans. Robot. Autom. 9(4), 361–373 (1993)

    Article  Google Scholar 

  39. Yoshikawa, T.: Force control of robot manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 220–226 (2000)

    Google Scholar 

  40. Brogliato, B.: Feedback control. In: Nonsmooth Mechanics, Communications and Control Engineering, pp. 397–461. Springer, London (1999)

    Google Scholar 

  41. Technology Research News. Cooperative robots share the load, Feb 2002. http://www.trnmag.com/Stories/2002/021302/Cooperative_robots_share_the_load_021302.html

  42. Stanford University. The Stanford Assistant Mobile Manipulator (SAMM). http://robotics.stanford.edu/~ruspini/samm.html

  43. Urbanek, H., Albu-Schaffer, A., Van Der Smagt, P.: Learning from demonstration: repetitive movements for autonomous service robotics. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 3495–3500 (2004)

    Google Scholar 

  44. Robot Rose: Robot rose media footage. http://robot-rose.com/media/

  45. Karayiannidis, Y., Doulgeri, Z.: Robot contact tasks in the presence of control target distortions. Robot. Auton. Syst. 58(5), 596–606 (2010)

    Article  Google Scholar 

  46. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  47. Caccavale, F., Uchiyama, M.: Cooperative manipulators. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 701–718. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  48. Uchiyama, M.: Chapter 1 Multi-arm robot systems: A survey. In: Chiacchio, Pasquale, Chiaverini, Stefano (eds.) Complex Robotic Systems. Lecture Notes in Control and Information Sciences, vol. 233, pp. 1–31. Springer, Berlin Heidelberg (1998)

    Chapter  Google Scholar 

  49. Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)

    Article  Google Scholar 

  50. Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., Abbeel, P.: Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2308–2315 (2010)

    Google Scholar 

  51. Yaskawa Motoman Robotics. Motoman sda10 assembling a chair. http://www.motoman.com/industries/furniture-fixtures.php

  52. Uchiyama, M., Dauchez, P.: Symmetric kinematic formulation and nonmaster/slave coordinated control of two-arm robots. Adv. Robot. 7(4), 361–383 (1992)

    Article  Google Scholar 

  53. Koivo, A.J., Unseren, M.A.: Reduced order model and decoupled control architecture for two manipulators holding a rigid object. J. Dyn. Syst. Meas. Control 113(4), 646–654 (1991)

    Article  MATH  Google Scholar 

  54. Caccavale, F., Chiacchio, P., Marino, A., Villani, L.: Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans. Mechatron. 13(5), 576–586 (2008)

    Article  Google Scholar 

  55. Caccavale, F., Villani, L.: Impedance control of cooperative manipulators. Mach. Intell. Robot. Control 2, 51–57 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlata Jelačić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jelačić, Z. (2018). Impedance Control in the Rehabilitation Robotics. In: Hadžikadić, M., Avdaković, S. (eds) Advanced Technologies, Systems, and Applications II. IAT 2017. Lecture Notes in Networks and Systems, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-71321-2_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71321-2_85

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71320-5

  • Online ISBN: 978-3-319-71321-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics