Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 198))

  • 1757 Accesses

Abstract

To measure data and solutions spatially, we recall a number of useful definitions and results on Lebesgue and standard Sobolev spaces. Then, we introduce more specialized Sobolev spaces, which are better suited to measuring solutions to electromagnetics problems, in particular, the divergence and the curl of fields. This also allows one to measure their trace at interfaces between two media, or on the boundary. Last, we construct ad hoc function spaces, adapted to the study of time- and space-dependent electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given any subset S of \(\mathbb {R}^n\), 1 S denotes the indicator function of S .

  2. 2.

    The space \({\mathcal {D}}(\varOmega )\) can also be denoted by \(C^\infty _c(\varOmega )\), where the index c stands for compact support.

  3. 3.

    Classically, for \(k\in \mathbb {N}\), β ∈ ]0, 1], \({\mathcal O}\subset \mathbb {R}^n\), \(C^{k,\beta }({\mathcal O})\) is the Hölder space defined by

    $$\displaystyle \begin{aligned} C^{k,\beta}({\mathcal O}):=\{f\in C^{k}({\mathcal O})\ :\ \sum_{\alpha\in\mathbb{N}^n,\ |\alpha|=k}\sup_{{\boldsymbol{x}}\ne\boldsymbol{y}}\frac{|\partial_\alpha f({\boldsymbol{x}})-\partial_\alpha f(\boldsymbol{y})|}{|{\boldsymbol{x}}-\boldsymbol{y}|{}^\beta}<\infty\},\end{aligned}$$

    where \(C^k({\mathcal O}):=\{f\in C^0({\mathcal O})\ :\ \partial _\alpha f\in C^0({\mathcal O}),\ \forall \alpha \in \mathbb {N}^n,\ |\alpha |\le k\}\).

    Lipschitz-continuity coincides with C 0, 1 continuity.

  4. 4.

    Given any subset S of \(\mathbb {R}^n\), int(S) denotes the interior of S.

  5. 5.

    Evidently, a direct construction is also possible!

  6. 6.

    See Sect. 4.1, Definition 4.1.1, for details on continuous linear mappings.

References

  1. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975)

    MATH  Google Scholar 

  2. R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edn. (Academic Press, New York, 2003)

    MATH  Google Scholar 

  3. C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  Google Scholar 

  4. C. Bernardi, M. Dauge, Y. Maday, Compatibility of traces on the edges and corners of a polyhedron. C. R. Acad. Sci. Paris Ser. I 331, 679–684 (2000)

    Article  Google Scholar 

  5. J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, ed. by J.L. Menaldi et al. (IOP Press, 2001), pp. 439–455

    Google Scholar 

  6. H. Brezis, Analyse fonctionnelle. Théorie et applications (Masson, Paris, 1983). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext (Springer, 2011)

    Google Scholar 

  7. A. Buffa, P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations. Part I: an integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)

    MATH  Google Scholar 

  8. M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics, vol. 1341 (Springer, Berlin, 1988)

    Google Scholar 

  9. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology (Springer, Berlin, 1990)

    MATH  Google Scholar 

  10. P. Fernandes, G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods App. Sci. 7, 957–991 (1997)

    Article  MathSciNet  Google Scholar 

  11. E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. di Padova 27, 284–305 (1957)

    MathSciNet  MATH  Google Scholar 

  12. J. Garsoux, Espaces Vectoriels Topologiques et Distributions (Dunod, Paris, 1963)

    MATH  Google Scholar 

  13. V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics, vol. 5 (Springer, Berlin, 1986)

    Book  Google Scholar 

  14. P. Grisvard, Théorèmes de traces relatifs à un polyèdre. C. R. Acad. Sci. Paris Ser. I 278, 1581–1583 (1974)

    MATH  Google Scholar 

  15. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24 (Pitman, London, 1985)

    Google Scholar 

  16. P. Grisvard, Singularities in Boundary Value Problems. RMA, vol. 22 (Masson, Paris, 1992)

    Google Scholar 

  17. J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1 (Dunod, Paris, 1968)

    MATH  Google Scholar 

  18. J. Nečas, Les méthodes directes en théorie des équations elliptiques (Masson, Paris, 1967)

    MATH  Google Scholar 

  19. P.-A. Raviart, J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles (Masson, Paris, 1983)

    MATH  Google Scholar 

  20. L. Schwartz, Théorie des Distributions (Hermann, Paris, 1966)

    MATH  Google Scholar 

  21. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3 (Springer, 2007)

    Google Scholar 

  22. F. Trèves, Basic Linear Partial Differential Equations (Academic Press, New York, 1975)

    MATH  Google Scholar 

  23. K. Yosida, Functional Analysis (Springer, Berlin, 1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assous, F., Ciarlet, P., Labrunie, S. (2018). Basic Applied Functional Analysis. In: Mathematical Foundations of Computational Electromagnetism. Applied Mathematical Sciences, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-70842-3_2

Download citation

Publish with us

Policies and ethics