Advertisement

Mathematical Foundations of Computational Electromagnetism

  • Franck Assous
  • Patrick Ciarlet
  • Simon Labrunie

Part of the Applied Mathematical Sciences book series (AMS, volume 198)

Table of contents

  1. Front Matter
    Pages i-ix
  2. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 1-71
  3. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 73-105
  4. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 107-145
  5. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 147-190
  6. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 191-221
  7. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 223-265
  8. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 267-312
  9. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 313-346
  10. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 347-392
  11. Franck Assous, Patrick Ciarlet, Simon Labrunie
    Pages 393-428
  12. Back Matter
    Pages 429-458

About this book

Introduction

This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations.

The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.

Keywords

Maxwell equations Vlasov Maxwell model Vlasov Maxwell equation Vlasov Maxwell system Magnetohydrodynamics electromagnetic Darwin model Helmholtz decomposition electrostatic problem magnetostatics magnetostatic field problem time harmonic electromagnetic fields Vlasov Poisson systems Vlasov Poisson equation linear Vlasov equation

Authors and affiliations

  • Franck Assous
    • 1
  • Patrick Ciarlet
    • 2
  • Simon Labrunie
    • 3
  1. 1.Department of MathematicsAriel UniversityArielIsrael
  2. 2.ParisTechENSTAPalaiseauFrance
  3. 3.Université de Lorraine, Institut Élie Cartan de LorraineVandoeuvre-lès-NancyFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-319-70842-3
  • Copyright Information Springer International Publishing AG, part of Springer Nature 2018
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-319-70841-6
  • Online ISBN 978-3-319-70842-3
  • Series Print ISSN 0066-5452
  • Series Online ISSN 2196-968X
  • Buy this book on publisher's site