Skip to main content

Biomaterials Produced via Green Electrospinning

  • Chapter
  • First Online:
Electrospun Biomaterials and Related Technologies

Abstract

Green electrospinning, starting from its definition, achieved great interest in the scientific community for the fabrication of electrospun products for biomedical, filtration, pharmaceutical and cosmetics applications. The use of green electrospinning results particularly relevant for the fabrication of biomaterials, in particular for tissue engineering and regenerative medicine applications. The focus of the present book chapter is on the definition of green electrospinning and the description of the pivotal parameters affecting the electrospinning process with particular focus on the solvent selection. The process parameters and the potential final applications of obtained electrospun mats starting from natural and synthetic polymers, their blends and composites will be also reported and highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krishnan R, Sundarrajan S, Ramakrishna S (2013) Green processing of nanofibers for regenerative medicine. Macromol Mater Eng 298:1034–1058. https://doi.org/10.1002/mame.201200323

    Article  CAS  Google Scholar 

  2. Sun J, Bubel K, Chen F, Kissel T, Agarwal S, Greiner A (2010) Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture. Macromol Rapid Commun 31:2077–2083. https://doi.org/10.1002/marc.201000379

    Article  CAS  PubMed  Google Scholar 

  3. Shenoy SL, Bates WD, Wnek G (2005b) Correlations between electrospinnability and physical gelation. Polymer (Guildf) 46:8990–9004. https://doi.org/10.1016/j.polymer.2005.06.053

    Article  CAS  Google Scholar 

  4. LeCorre-Bordes D, Tucker N, Huber T, Buunk N, Staiger MP (2016) Shear-electrospinning: extending the electrospinnability range of polymer solutions. J Mater Sci 51:6686–6696. https://doi.org/10.1007/s10853-016-9955-y

    Article  CAS  Google Scholar 

  5. McClements DJ (2000) Comments on viscosity enhancement and depletion flocculation by polysaccharides. Food Hydrocoll 14:173–177. https://doi.org/10.1016/S0268-005X(99)00065-X

    Article  CAS  Google Scholar 

  6. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005a) Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer (Guildf) 46:3372–3384. https://doi.org/10.1016/j.polymer.2005.03.011

    Article  CAS  Google Scholar 

  7. Colombo V, Fabiani D, Focarete ML, Gherardi M, Gualandi C, Laurita R, Zaccaria M (2014) Atmospheric pressure non-equilibrium plasma treatment to improve the electrospinnability of poly(L-lactic acid) polymeric solution. Plasma Process Polym 11:247–255. https://doi.org/10.1002/ppap.201300141

    Article  CAS  Google Scholar 

  8. Arayanarakul K, Choktaweesap N, Aht-ong D, Meechaisue C, Supaphol P (2006) Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromol Mater Eng 291:581–591. https://doi.org/10.1002/mame.200500419

    Article  CAS  Google Scholar 

  9. Wang X, Pellerin C, Bazuin CG (2016) Enhancing the electrospinnability of low molecular weight polymers using small effective cross-linkers. Macromolecules 49:891–899. https://doi.org/10.1021/acs.macromol.5b02670

    Article  CAS  Google Scholar 

  10. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, Toit LC, Ndesendo VMK (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:22. https://doi.org/10.1155/2013/789289

    Article  Google Scholar 

  11. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro-and nanostructured surface morphology on electrospum polymer fibers. Macromolecules 35:8456–8466. https://doi.org/10.1021/ma020444a

    Article  CAS  Google Scholar 

  12. Casasola R, Thomas NL, Trybala A, Georgiadou S (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer (Guildf) 55:4728–4737. https://doi.org/10.1016/j.polymer.2014.06.032

    Article  CAS  Google Scholar 

  13. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P (2005) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41:409–421. https://doi.org/10.1016/j.eurpolymj.2004.10.010

    Article  CAS  Google Scholar 

  14. Luo CJ, Stride E, Edirisinghe M (2012) Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 45:4669–4680. https://doi.org/10.1021/ma300656u

    Article  CAS  Google Scholar 

  15. Qin X, Wu D (2012) Effect of different solvents on poly(caprolactone) (PCL) electrospun nonwoven membranes. J Therm Anal Calorim 107:1007–1013. https://doi.org/10.1007/s10973-011-1640-4

    Article  CAS  Google Scholar 

  16. Mohammad Khanlou H, Chin Ang B, Talebian S, Muhammad Afifi A, Andriyana A (2014) Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments. Text Res J 85:356–368. https://doi.org/10.1177/0040517514547208

    Article  Google Scholar 

  17. Xie J, Li X, Xia Y (2008) Putting electrospun nanofibers to work for biomedical research. Macromol Rapid Commun 29:1775–1792. https://doi.org/10.1002/marc.200800381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. ICH (2011) Q3C guideline for residual solvents (R5). Int Conf Harmon Tech Requir Regist Pharm Hum Use 29

    Google Scholar 

  19. Bruice PY (2011) Organic chemistry. Prentice Hall

    Google Scholar 

  20. Ahn Y, DH H, Hong JH, Lee SH, Kim HJ, Kim H (2012) Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber. Carbohydr Polym 89:340–345. https://doi.org/10.1016/j.carbpol.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  21. Liverani L, Boccaccini A (2016) Versatile production of poly(epsilon-caprolactone) fibers by electrospinning using benign solvents. Nanomaterials 6:75. https://doi.org/10.3390/nano6040075

    Article  PubMed Central  Google Scholar 

  22. Putti M, Simonet M, Solberg R, Peters GWM (2015) Electrospinning poly(ε-caprolactone) under controlled environmental conditions: influence on fiber morphology and orientation. Polymer (Guildf) 63:189–195. https://doi.org/10.1016/j.polymer.2015.03.006

    Article  CAS  Google Scholar 

  23. Nam J, Huang Y, Agarwal S, Lannutti J (2008) Materials selection and residual solvent retention in biodegradable electrospun fibers. J Appl Polym Sci 107:1547–1554. https://doi.org/10.1002/app.27063

    Article  CAS  Google Scholar 

  24. Agarwal S, Greiner A (2011) On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning. Polym Adv Technol 22:372–378. https://doi.org/10.1002/pat.1883

    Article  CAS  Google Scholar 

  25. McClellan P, Landis WJ (2016) Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering. Biores Open Access 5:212–227. https://doi.org/10.1089/biores.2016.0022

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li X, Su Y, Liu S, Tan L, Mo X, Ramakrishna S (2010a) Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloids Surf B Biointerfaces 75:418–424. https://doi.org/10.1016/j.colsurfb.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Zhang H, Li H, Yuan X (2010b) Encapsulation of proteinase K in PELA ultrafine fibers by emulsion electrospinning: preparation and in vitro evaluation. Colloid Polym Sci 288:1113–1119. https://doi.org/10.1007/s00396-010-2235-5

    Article  CAS  Google Scholar 

  28. Yang Y, Li X, Qi M, Zhou S, Weng J (2008) Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur J Pharm Biopharm 69:106–116. https://doi.org/10.1016/j.ejpb.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  29. Buruaga L, Sardon H, Irusta L, González A, Fernández-Berridi MJ, Iruin JJ (2010) Electrospinning of waterborne polyurethanes. J Appl Polym Sci 115:1176–1179. https://doi.org/10.1002/app.31219

    Article  CAS  Google Scholar 

  30. Pal J, Sharma S, Sanwaria S, Kulshreshtha R, Nandan B, Srivastava RK (2014) Conducive 3D porous mesh of poly(ε-caprolactone) made via emulsion electrospinning. Polymer (United Kingdom) 55:3970–3979. https://doi.org/10.1016/j.polymer.2014.06.067

    CAS  Google Scholar 

  31. Wang X, Yuan Y, Huang X, Yue T (2015) Controlled release of protein from core-shell nanofibers prepared by emulsion electrospinning based on green chemical. J Appl Polym Sci 132:n/a-n/a. https://doi.org/10.1002/app.41811

  32. Spano F, Quarta A, Martelli C, Ottobrini L, Rossi RM, Gigli G, Blasi L (2016) Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility. Nanoscale 8:9293–9303. https://doi.org/10.1039/C6NR00782A

    Article  CAS  PubMed  Google Scholar 

  33. Dong B, Arnoult O, Smith ME, Wnek GE (2009) Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol Rapid Commun 30:539–542. https://doi.org/10.1002/marc.200800634

    Article  CAS  PubMed  Google Scholar 

  34. Elamparithi A, Punnoose AM, Kuruvilla S (2016) Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artif Cells Nanomed Biotechnol 44:1318–1325. https://doi.org/10.3109/21691401.2015.1029629

    CAS  PubMed  Google Scholar 

  35. Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LYL, Hutmacher DW, Sheppard C, Raghunath M (2008) Electro-spinning of pure collagen nano-fibres - just an expensive way to make gelatin? Biomaterials 29:2293–2305. https://doi.org/10.1016/j.biomaterials.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  36. Liu Q, Zhou Y, Zhao Z, Li Z (2013b) Environmentally benign synthesis of electrospun collagen-I in acetic acid solution. Optoelectron Adv Mater Rapid Commun 7:272–275

    CAS  Google Scholar 

  37. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297. https://doi.org/10.1016/j.biomaterials.2003.08.045

    Article  CAS  PubMed  Google Scholar 

  38. Suwantong O, Pavasant P, Supaphol P (2011) Electrospun zein fibrous membranes using glyoxal as cross-linking agent: preparation, characterization and potential for use in biomedical applications. Chiang Mai J Sci 38:56–70

    CAS  Google Scholar 

  39. Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61:988–1006. https://doi.org/10.1016/j.addr.2009.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang M, Jin H, Kaplan D, Rutledge G (2004) Mechanical properties of electrospun silk fibers. Macromolecules:6856–6864

    Google Scholar 

  41. Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27:724–734. https://doi.org/10.1016/j.biomaterials.2005.06.024

    Article  CAS  PubMed  Google Scholar 

  42. Chen L, Zhu C, Fan D, Liu B, Ma X, Duan Z, Zhou Y (2011) A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility. J Biomed Mater Res A 99A:395–409. https://doi.org/10.1002/jbm.a.33202

    Article  CAS  Google Scholar 

  43. Chakrapani VY, Gnanamani A, Giridev VR, Madhusoothanan M, Sekaran G (2012) Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci 125:3221–3227. https://doi.org/10.1002/app.36504

    Article  CAS  Google Scholar 

  44. Choktaweesap N, Arayanarakul K, Aht-ong D, Meechaisue C, Supaphol P (2007) Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym J 39:622–631. https://doi.org/10.1295/polymj.PJ2006190

    Article  CAS  Google Scholar 

  45. Song J-H, Kim H-E, Kim H-W (2008) Production of electrospun gelatin nanofiber by water-based co-solvent approach. J Mater Sci Mater Med 19:95–102. https://doi.org/10.1007/s10856-007-3169-4

    Article  CAS  PubMed  Google Scholar 

  46. Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F (2003) Regeneration of Bombyx mori silk by electrospinning - Part 1: processing parameters and geometric properties. Polymer (Guildf) 44:5721–5727. https://doi.org/10.1016/S0032-3861(03)00532-9

    Article  CAS  Google Scholar 

  47. Silva SS, Maniglio D, Motta A, Mano JF, Reis RL, Migliaresi C (2008) Genipin-modified silk-fibroin nanometric nets. Macromol Biosci 8:766–774. https://doi.org/10.1002/mabi.200700300

    Article  CAS  PubMed  Google Scholar 

  48. Meinel AJ, Kubow KE, Klotzsch E, Garcia-Fuentes M, Smith ML, Vogel V, Merkle HP, Meinel L (2009) Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials 30:3058–3067. https://doi.org/10.1016/j.biomaterials.2009.01.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu J, Shao H, Hu X (2007) Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. Int J Biol Macromol 41:469–474. https://doi.org/10.1016/j.ijbiomac.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  50. Lin L, Perets A, el H-e Y, Varma D, Li M, Lazarovici P, Woerdeman DL, Lelkes PI (2013) Alimentary “green” proteins as electrospun scaffolds for skin regenerative engineering. J Tissue Eng Regen Med 7:994–1008. https://doi.org/10.1002/term.1493

    Article  CAS  PubMed  Google Scholar 

  51. Ramji K, Shah RN (2014) Electrospun soy protein nanofiber scaffolds for tissue regeneration. J Biomater Appl 29:411–422. https://doi.org/10.1177/0885328214530765

    Article  PubMed  Google Scholar 

  52. Lawson C, Stanishevsky A, Sivan M, Pokorny P, Lukáš D (2016) Rapid fabrication of poly(ε-caprolactone) nanofibers using needleless alternating current electrospinning. J Appl Polym Sci 133:n/a-n/a. https://doi.org/10.1002/app.43232

  53. Ferreira JL, Gomes S, Henriques C, Borges JP, Silva JC (2014) Electrospinning polycaprolactone dissolved in glacial acetic acid: fiber production, nonwoven characterization, and in vitro evaluation. J Appl Polym Sci 131:41086. https://doi.org/10.1002/app.41068

    Article  Google Scholar 

  54. Van der Schueren L, De Schoenmaker B, Kalaoglu ÖI, De Clerck K (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polym J 47:1256–1263. https://doi.org/10.1016/j.eurpolymj.2011.02.025

    Article  Google Scholar 

  55. Da Silva GR, Lima TH, Oréfice RL, Fernandes-Cunha GM, Silva-Cunha A, Zhao M, Behar-Cohen F (2015) In vitro and in vivo ocular biocompatibility of electrospun poly(ɛ-caprolactone) nanofibers. Eur J Pharm Sci 73:9–19. https://doi.org/10.1016/j.ejps.2015.03.003

    Article  PubMed  Google Scholar 

  56. Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R (2010) Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym 80:414–420. https://doi.org/10.1016/j.carbpol.2009.11.039

    Article  Google Scholar 

  57. Mirzaei E, Faridi-Majidi R, Shokrgozar MA, Asghari F (2014) Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold. Nanomed J 1:137–146. https://doi.org/10.7508/nmj.2014.03.003

    Google Scholar 

  58. Liu Y, Park M, Shin HK, Pant B, Park SJ, Kim HY (2014) Preparation and characterization of chitosan-based nanofibers by ecofriendly electrospinning. Mater Lett 132:23–26. https://doi.org/10.1016/j.matlet.2014.06.041

    Article  CAS  Google Scholar 

  59. Van Der Schueren L, Steyaert I, De Schoenmaker B, De Clerck K (2012) Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym 88:1221–1226. https://doi.org/10.1016/j.carbpol.2012.01.085

    Article  Google Scholar 

  60. Gholipour Kanani A, Bahrami SH (2011) Effect of changing solvents on poly(ε-caprolactone) nanofibrous webs morphology. J Nanomater 2011:1–10. https://doi.org/10.1155/2011/724153

    Article  Google Scholar 

  61. Katsogiannis KAG, Vladisavljević GT, Georgiadou S (2015) Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur Polym J 69:284–295. https://doi.org/10.1016/j.eurpolymj.2015.01.028

    Article  CAS  Google Scholar 

  62. Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y, Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y (2013a) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:1–11. https://doi.org/10.1155/2013/495708

    Google Scholar 

  63. Ghosal K, Thomas S, Kalarikkal N, Gnanamanis A (2014) Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. J Polym Res 21:2–6. https://doi.org/10.1007/s10965-014-0410-y

    Article  Google Scholar 

  64. Gönen SÖ, Taygun ME, Küçükbayrak S (2016) Fabrication of bioactive glass containing nanocomposite fiber mats for bone tissue engineering applications. Compos Struct 138:96–106. https://doi.org/10.1016/j.compstruct.2015.11.033

    Article  Google Scholar 

  65. Castilla-Casadiego DA, Maldonado M, Sundaram P, Almodovar J (2016) “Green” electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold. MRS Commun:1–6. https://doi.org/10.1557/mrc.2016.43

  66. Wei K, Kim BS, Kim IS (2011) Fabrication and biocompatibility of electrospun silk biocomposites. Membranes (Basel) 1:275–298. https://doi.org/10.3390/membranes1040275

    Article  CAS  Google Scholar 

  67. Lepry WC, Smith S, Liverani L, Boccaccini AR, Nazhat SN (2016) Acellular bioactivity of sol-gel derived borate glass-polycaprolactone electrospun scaffolds. Biomed Glass 2:88–98

    Google Scholar 

  68. Rujitanaroj P, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer (Guildf) 49:4723–4732. https://doi.org/10.1016/j.polymer.2008.08.021

    Article  CAS  Google Scholar 

  69. Zhuang X, Cheng B, Kang W, Xu X (2010) Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym 82:524–527. https://doi.org/10.1016/j.carbpol.2010.04.085

    Article  CAS  Google Scholar 

  70. Jiang Q, Reddy N, Yang Y (2010) Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater 6:4042–4051. https://doi.org/10.1016/j.actbio.2010.04.024

    Article  CAS  PubMed  Google Scholar 

  71. Arvand M, Mirzaei E, Derakhshan MA, Kharrazi S, Sadroddiny E, Babapour M, Faridi-Majidi R (2015) Fabrication of antibacterial silver nanoparticle-modified chitosan fibers using Eucalyptus extract as a reducing agent. J Appl Polym Sci 132:42133. https://doi.org/10.1002/app.42133

    Article  Google Scholar 

Download references

Acknowledgements

Liliana Liverani acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 657264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Liverani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liverani, L., Vester, L., Boccaccini, A.R. (2017). Biomaterials Produced via Green Electrospinning. In: Almodovar, J. (eds) Electrospun Biomaterials and Related Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70049-6_5

Download citation

Publish with us

Policies and ethics