Skip to main content

Advertisement

Log in

Production of electrospun gelatin nanofiber by water-based co-solvent approach

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, gelatin, was successfully electrospun from a newly developed water-based co-solvent composed of ethyl acetate and acetic acid in water. Since natural polymers including gelatin exhibit limited solubility in water, toxic or highly acidic solvents are normally used to dissolve them for electrospinning. Instead of using those solvents, we used ethyl acetate in concert with acetic acid in water, and investigated the beneficial effect of its use in terms of the spinnability of the nanofiber and the acidity of the solvent. The replacement of acetic acid with ethyl acetate was observed to improve the spinnability of the nanofiber by reducing the surface tension of the solution as well as to increase the pH of the solvent significantly. The optimal composition of the co-solvent was found to correspond to a ratio of ethyl acetate to acetic acid of 2:3. Under this solvent condition, the gelatin could be dissolved at concentrations of up to ∼11 wt% and electrospun successfully to produce nanofibers with various diameters (47–145 nm on average) depending on the gelatin concentration. The water-based co-solvent method proposed herein may be useful for generating other nanofibrous natural polymers as well as being applicable in delivery systems for bioactive molecules within the nanofiber matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R LANGER and D. A. TIRRELL, Nature 428 (2004) 487

    Article  CAS  Google Scholar 

  2. P. Y. W DANKERS, M. C. HARMSEN, L. A. BROUWER, M. J. A Van LUYN and E. W. MEIJER, Nature Mater. 4 (2005) 568

    Article  CAS  Google Scholar 

  3. Z. M. HUANG, Y. Z. ZHANG, M. KOTAKI and S. RAMARKRISHINA, Compos. Sci. Technol. 63 (2005) 2223

    Article  Google Scholar 

  4. H. LIU and Y. L. HSIEH, J. Polym. Sci. 40 (2002) 2119

    CAS  Google Scholar 

  5. Y. ZHANG, H. OUYANG, C. T. LIM, S. RAMARKRISHINA and Z. M. HUANG, J. Biomed. Mater. Res. Part B: Appl. Biomater. 72B (2005) 156

    Article  CAS  Google Scholar 

  6. H. W. KIM, J. H. SONG and H. E. KIM, Adv. Funct. Mater. 15 (2005) 1988

    Article  CAS  Google Scholar 

  7. M. LI, M. J. MONDRINOS, M. R. GANDHI, F. K. KO, A. S. WEISS and P. I. LELKES, Biomaterials 26 (2005) 5999

    Article  CAS  Google Scholar 

  8. G. E. WNEK, M. E. CARR, D. G. SIMPSON and G. L. BOWLIN, Nano Lett. 3 (2003) 213

    Article  CAS  Google Scholar 

  9. K. OHKAWA, D. CHA, H. KIM, A. NISHIDA and H. YAMAMOTO, Macromol. Rapid Commun. 25 (2004) 1600

    Article  CAS  Google Scholar 

  10. J. A. MATTHEWS, G. E. WNEK, D. G. SIMPSON and G. L. BOWLIN, Biomacromolecules 3 (2002) 232

    Article  CAS  Google Scholar 

  11. B. DUAN, C. DONG, X. YUAN and K. YAO, J. Biomater. Sci. Polymer Edn. 15 (2004) 797

    Article  CAS  Google Scholar 

  12. L. HUANG, K. NAGAPUDI, R. P. APKARIAN and E. L. CHAIKOF, J. Biomater. Sci. Polymer Edn. 12 (2001) 979

    Article  CAS  Google Scholar 

  13. X. GENG, O. H. KWON and J. JANG, Biomaterials, 26 (2005) 5427

    Article  CAS  Google Scholar 

  14. C. S. KI, D. H. BAEK, K. D. GANG, K. H. LEE, I. C. UM and Y. H. PARK, Polymer 46 (2005) 5094

    Article  CAS  Google Scholar 

  15. C. BURGER, B. S. HSIAO and B. CHU, Ann Rev Mater Res 36 (2006) 333

    Article  CAS  Google Scholar 

  16. M. D. MISAK, J. Colloid Interf. Sci. 27 (1968) 141

    Article  Google Scholar 

  17. M. M. HOHMAN, M. SHIN, G. RUTLEDGE and M. P. BRENNER, Phys. Fluids 13 (2001) 2221

    Article  CAS  Google Scholar 

  18. X. WANG, I. C. UM, D. FANG, A. OKAMOTO, B. S. HSIAO and B. CHU, Polymer 49 (2005) 4853

    Google Scholar 

  19. P. C. HEIMENZ and R. RAJAGOPALAN, in “Principles of Colloid and Surface Chemistry”, 3rd ed. (M. Dekker, New York, 1997)

  20. FARBWERKE HOECHST AG, Hoechst Solvents. Frankfurt (M), Germany (1969)

  21. Ş. A. ÇETINUS and H. N. ÖZTOP, Enzyme Microb. Technol. 32 (2003) 889

    Google Scholar 

  22. A. N. FRAGA and R. J. J. WILLIAMS, Polymer 26 (1985) 113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, JH., Kim, HE. & Kim, HW. Production of electrospun gelatin nanofiber by water-based co-solvent approach. J Mater Sci: Mater Med 19, 95–102 (2008). https://doi.org/10.1007/s10856-007-3169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3169-4

Keywords

Navigation