Skip to main content

Electrospun Collagen Scaffolds

  • Chapter
  • First Online:
Electrospun Biomaterials and Related Technologies

Abstract

Nanofibrous collagen scaffolds developed via electrospinning have revolutionized the field of designing useful biomaterials for regenerative or tissue engineering. Electrospun collagen scaffolds allow for the replication of the extracellular matrix of tissues with regards of their chemical, physical, and mechanical characteristics. Because collagen is the most abundant protein found in tissues, it can be the base for an ideal scaffold to mimic the majority of soft or hard tissues such as bone, which contains an organic component composed of collagen and a mineral component. The physical and mechanical properties of the collagen nanofibers are of vital importance to promote the necessary and specific signals of the cellular or tissue environment supporting different cellular processes. This chapter describes the fabrication and modulation of the physical and mechanical properties of electrospun collagen nanofibers and their biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AcOH:

Dilute acetic acid

AFM:

Atomic force microscopy

BDDGE:

1,4-Butanediol diglycidyl ether

CD:

Circular dichroism spectroscopy

Col/PCL:

Collagen/polycaprolactone

DMSO:

Dimethyl sulfoxide

ECs:

Endothelial cells

ECM:

Extracellular matrix

EDC:

1-Ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride

EtOH:

Ethanol

FTIR:

Fourier transform infrared spectroscopy

GAG:

Glycosaminoglycan

GFAP staining:

Glial fibrillary acidic protein staining

HA:

Nanohydroxyapatite

HAc:

Acetic acid

HFIP:

Hexafluoroisopropanol

HFP:

1,1,1,3,3,3-Hexafluoro-2-propanol

MSCs:

Mesenchymal stem cells

NHOK:

Normal human oral keratinocytes

NHS:

N-Hydroxysuccinimide

NOI:

Normalized orientation index

NRVCM:

Ventricular cardiomyocytes of primary neonatal rats

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PIECs:

Porcine iliac artery endothelial cells

PLGA:

Poly(lactide-co-glycolide

PLLA:

Poly(l-lactic acid)

SCs:

Schwann cells

SCI:

Spinal cord injury

SEM:

Scanning electron microscope

SMCs:

Smooth muscle cells

TFE:

Tri-fluoroethanol

TPU:

Thermoplastic polyurethane

vWF:

Von Willebrand factor

References

  1. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  Google Scholar 

  2. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2011) The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (e{open}-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 32:8108–8117. https://doi.org/10.1016/j.biomaterials.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  3. Kim IL, Khetan S, Baker BM, Chen CS, Burdick JA (2013) Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials 34:5571–5580. https://doi.org/10.1016/j.biomaterials.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berthod F, Hayek D, Damour O (1993) Collagen synthesis by fibroblasts cultured within a collagen sponge. Biomaterials 14(10):749–754. https://doi.org/10.1016/0142-9612(93)90039-5

    Article  CAS  PubMed  Google Scholar 

  5. Meng S, Liu Z, Shen L, Guo Z, Chou LL, Zhong W, Du Q, Ge J (2009) The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials 30:2276–2283. https://doi.org/10.1016/j.biomaterials.2008.12.075

    Article  CAS  PubMed  Google Scholar 

  6. Rho SK, Jeong L, Lee G, Seo B, Jeong Y, Hong S, Roh S, Jin J, Ho W, Min B (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27:1452–1461. https://doi.org/10.1016/j.biomaterials.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  7. Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328:90–96. https://doi.org/10.1016/j.memsci.2008.11.046

    Article  CAS  Google Scholar 

  8. Malinen MM, Kanninen LK, Corlu A, Isoniemi HM, Lou Y, Yliperttula ML, Urtti AO (2014) Biomaterials differentiation of liver progenitor cell line to functional organotypic cultures in 3D nano fi brillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35:5110–5121. https://doi.org/10.1016/j.biomaterials.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  9. Xu F, Weng B, Gilkerson R, Alberto L, Lozano K (2015) Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr Polym 115:16–24. https://doi.org/10.1016/j.carbpol.2014.08.081

    Article  CAS  PubMed  Google Scholar 

  10. Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ (2011) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7:1634–1643. https://doi.org/10.1016/j.actbio.2010.11.039

    Article  CAS  PubMed  Google Scholar 

  11. Almodovar J, Castilla-Casadiego DA, Ramos-Avilez HV (2015) Polysaccharide-based biomaterials for cell–material interface. CRC Press, Boca Raton, pp 215–244

    Google Scholar 

  12. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406. https://doi.org/10.1083/jcb.201102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887. https://doi.org/10.3390/ma3031863

    Article  CAS  PubMed Central  Google Scholar 

  14. Di Lullo GA, Sweeney SM, Körkkö J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277:4223–4231. https://doi.org/10.1074/jbc.M110709200

    Article  PubMed  Google Scholar 

  15. Castilla-Casadiego DA, Ramos-Avilez HV, Herrera-Posada S, Calcagno B, Loyo L, Shipmon J, Acevedo A, Quintana A, Almodovar J (2016) Engineering of a stable collagen nanofibrous scaffold with tunable fiber diameter, alignment, and mechanical properties. Macromol Mater Eng 301(9):1064–1075. https://doi.org/10.1002/mame.201600156

    Article  CAS  Google Scholar 

  16. Barnes CP, Pemble CW, Brand DD, Simpson DG, Bowlin GL (2007) Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng 13:1593–1605. https://doi.org/10.1089/ten.2006.0292

    Article  CAS  PubMed  Google Scholar 

  17. van der Werf KO, Bennink ML, Yang L, Fitie CFC, Dijkstra PJ, Feijen J (2008) Mechanical properties of single electrospun collagen type I fibers. Biomaterials 29:955–962. https://doi.org/10.1016/j.biomaterials.2007.10.058

    Article  PubMed  Google Scholar 

  18. Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8:1–20. https://doi.org/10.3390/polym8020042

    Article  CAS  Google Scholar 

  19. Sahoo S, Ouyang H, Goh JC-H, Tay TE, Toh SL (2006) Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 12:91–99. https://doi.org/10.1089/ten.2006.12.ft-8

    Article  CAS  PubMed  Google Scholar 

  20. Liu T, Houle JD, Xu J, Chan BP, Chew SY (2012) Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A 18:1057–1066. https://doi.org/10.1089/ten.TEA.2011.0430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893. https://doi.org/10.1016/j.actbio.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  22. Gigante A, Busilacchi A, Lonzi B, Cecconi S, Manzotti S, Renghini C, Giuliani A, Mattioli-Belmonte M (2013) Purified collagen i oriented membrane for tendon repair: an ex vivo morphological study. J Orthop Res 31:738–745. https://doi.org/10.1002/jor.22270

    Article  CAS  PubMed  Google Scholar 

  23. Lee SJ, Liu J, SH O, Soker S, Atala A, Yoo JJ (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29:2891–2898. https://doi.org/10.1016/j.biomaterials.2008.03.032

    Article  CAS  PubMed  Google Scholar 

  24. Goh Y-F, Shakir I, Hussain R (2013) Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 48:3027–3054. https://doi.org/10.1007/s10853-013-7145-8

    Article  CAS  Google Scholar 

  25. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  26. Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 39:125–131. https://doi.org/10.1016/j.colsurfb.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  27. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  28. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211. https://doi.org/10.1089/ten.2006.12.1197

    Article  CAS  PubMed  Google Scholar 

  29. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  CAS  PubMed  Google Scholar 

  30. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238. https://doi.org/10.1021/bm015533u

    Article  CAS  PubMed  Google Scholar 

  31. Kai D, Prabhakaran MP, Jin G, Ramakrishna S (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 98(2):379–386. https://doi.org/10.1002/jbm.b.31862

    Article  PubMed  Google Scholar 

  32. Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15):2603–2610. https://doi.org/10.1016/j.biomaterials.2004.06.051

    Article  CAS  PubMed  Google Scholar 

  33. Zhong S, Teo WE, Zhu X, Beuerman RW, Ramakrishna S, Yung LYL (2006) An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res Part A 79(3):456–463. https://doi.org/10.1002/jbm.a.30870

    Article  Google Scholar 

  34. Shields KJ, Beckman MJ, Bowlin GL, Wayne JS (2004) Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng 10:1510–1517. https://doi.org/10.1089/ten.2004.10.1510

    Article  CAS  PubMed  Google Scholar 

  35. Ping S, Eong W, Zhu X, Beuerman R (2007) Development of a novel collagen – GAG nanofibrous scaffold via electrospinning. Mater Sci Eng C 27:262–266. https://doi.org/10.1016/j.msec.2006.05.010

    Article  Google Scholar 

  36. Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LL, Hutmacher DW (2008) Electro-spinning of pure collagen nano-fibers - just an expensive way to make gelatin? Biomaterials 29(15):2293–2305. https://doi.org/10.1016/j.biomaterials.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  37. Dong B, Arnoult O, Smith ME, Wnek GE (2009) Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol Rapid Commun 30:539–542. https://doi.org/10.1002/marc.200800634

    Article  CAS  PubMed  Google Scholar 

  38. Liu T, Teng WK, Chan BP, Chew SY (2010) Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J Biomed Mater Res - Part A 95:276–282. https://doi.org/10.1002/jbm.a.32831

    Article  Google Scholar 

  39. Chakrapani VY, Gnanamani A, Giridev VR, Madhusoothanan M, Sekaran G (2012) Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci 125(4):3221–3227. https://doi.org/10.1002/app.36504

    Article  CAS  Google Scholar 

  40. Lin J, Li C, Zhao Y, Hu J, Zhang L (2012) Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl Mater Interface 4(2):1050–1057. https://doi.org/10.1021/am201669z

    Article  CAS  Google Scholar 

  41. Fiorani A, Gualandi C, Panseri S, Montesi M, Marcacci M, Focarete ML, Bigi A (2014) Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. J Mater Sci Mater Med 25(10):2313–2321. https://doi.org/10.1007/s10856-014-5196-2

    Article  CAS  PubMed  Google Scholar 

  42. Kazanci M (2014) Solvent and temperature effects on folding of electrospun collagen nanofibers. Mater Lett 130:223–226. https://doi.org/10.1016/j.matlet.2014.05.114

    Article  CAS  Google Scholar 

  43. Elamparithi A, Punnoose AM, Kuruvilla S (2015) Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering. Artif Cells Nanomed Biotechnol 44(5):1318–1325. https://doi.org/10.3109/21691401.2015.1029629

    PubMed  Google Scholar 

  44. Alegre-Cebollada J, Martínez del Pozo A, Gavilanes JG, Goormaghtigh E (2007) Infrared spectroscopy study on the conformational changes leading to pore formation of the toxin sticholysin II. Biophys J 93:3191–3201. https://doi.org/10.1529/biophysj.106.102566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Belbachir K, Noreen R, Gouspillou G, Petibois C (2009) Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem 395:829–837. https://doi.org/10.1007/s00216-009-3019-y

    Article  CAS  PubMed  Google Scholar 

  46. Yao S, Moenner M, Engdahl A, Petibois C (2012) Use of synchrotron-radiation-based FTIR imaging for characterizing changes in cell contents. Anal Bioanal Chem 404:1311–1316. https://doi.org/10.1007/s00216-012-6223-0

    Article  CAS  PubMed  Google Scholar 

  47. Agarwal S, Greiner A (2011) On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning. Polym Adv Technol 22:372–378. https://doi.org/10.1002/pat.1883

    Article  CAS  Google Scholar 

  48. Liverani L, Boccaccini A (2016) Versatile production of poly(epsilon-caprolactone) fibers by electrospinning using benign solvents. Nanomaterials 6:75. https://doi.org/10.3390/nano6040075

    Article  PubMed Central  Google Scholar 

  49. Castilla-Casadiego DA, Maldonado M, Sundaran P, Almodovar J (2016b) “Green” electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold. MRS Commun 6(4):402–407. https://doi.org/10.1557/mrc.2016.43

    Article  CAS  Google Scholar 

  50. Jun Z, Hou H, Schaper A, Wendorff JH, Greiner A (2003) Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. Polymers 3(1):102–110. 1–9. https://doi.org/10.1515/epoly.2003.3.1.102

    Google Scholar 

  51. Chen R, Qiu L, Ke Q, He C, Mo X (2009) Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications. J Biomater Sci Polym Ed 20(11):1513–1536. https://doi.org/10.1163/092050609X12464344958883

    Article  CAS  PubMed  Google Scholar 

  52. Xu C, Yang F, Wang S, Ramakrishna S (2004) In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res A 71(1):154–161. https://doi.org/10.1002/jbm.a.30143

    Article  PubMed  Google Scholar 

  53. Tuck SJ, Leach MK, Feng ZQ, Corey JM (2012) Critical variables in the alignment of electrospun PLLA nanofibers. Mater Sci Eng C 32(7):1779–1784. https://doi.org/10.1016/j.msec.2012.04.060

    Article  CAS  Google Scholar 

  54. Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257. https://doi.org/10.1007/s00441-009-0844-4

    Article  CAS  PubMed  Google Scholar 

  55. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313:183–188. https://doi.org/10.1016/j.colsurfa.2007.04.129

    Article  Google Scholar 

  56. Zhang Q, Lv S, Lu J, Jiang S, Lin L (2015) Characterization of polycaprolactone/collagen fibrous scaffolds by electrospinning and their bioactivity. Int J Biol Macromol 76:94–101. https://doi.org/10.1016/j.ijbiomac.2015.01.063

    Article  CAS  PubMed  Google Scholar 

  57. Jia L, Prabhakaran MP, Qin X, Ramakrishna S (2013) Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Mater Sci Eng C 33(8):4640–4650. https://doi.org/10.1016/j.msec.2013.07.021

    Article  CAS  Google Scholar 

  58. Huang C, Chen R, Ke Q, Morsi Y, Zhang K, Mo X (2011) Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B: Biointerfaces 82(2):307–315. https://doi.org/10.1016/j.colsurfb.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  59. Theron SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45:2017–2030

    Article  CAS  Google Scholar 

  60. Tong HW, Wang M (2011) An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrate-co-hydroxyvalerate) fibers. J Appl Polym Sci 120:1694–1706. https://doi.org/10.1002/app.33302

    Article  CAS  Google Scholar 

  61. Meimandi-Parizi A, Oryan A, Moshiri A (2013) Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance. J Biomed Sci 20(1):28. https://doi.org/10.1186/1423-0127-20-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wallace DG, Rosenblatt J (2003) Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev 55(12):1631–1649. https://doi.org/10.1016/j.addr.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  63. Prabhakaran MP, Vatankhah E, Ramakrishna S (2013) Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng 110(10):2775–2784. https://doi.org/10.1002/bit.24937

    Article  CAS  PubMed  Google Scholar 

  64. Ouyang Y, Huang C, Zhu Y, Fan C, Ke Q (2013) Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. J Biomed Nanotechnol 9(6):931–943. https://doi.org/10.1166/jbn.2013.1605

    Article  CAS  PubMed  Google Scholar 

  65. Ashammakhi N, Ndreu A, Nikkola L, Wimpenny I, Yang Y (2008) Advancing tissue engineering by using electrospun nanofibers. Regen Med 3(4):547–574. https://doi.org/10.2217/17460751.3.4.547

    Article  CAS  PubMed  Google Scholar 

  66. Zeugolis DI, Paul GR, Attenburrow G (2009) Cross-linking of extruded collagen fibers-A biomimetic three-dimensional scaffold for tissue engineering applications. J Biomed Mater Res A 89(4):895–908. https://doi.org/10.1002/jbm.a.32031

    Article  PubMed  Google Scholar 

  67. Wong SS, Jameson DM (2011) Chemistry of protein and nucleic acid cross-linking and conjugation, 2nd edition. CRC Press, Boca Raton, p 297–315

    Google Scholar 

  68. Huang GP, Shanmugasundaram S, Masih P, Pandya D, Amara S, Collins G, Arinzeh TL (2015) An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J Biomed Mater Res Part A 103(2):762–771. https://doi.org/10.1002/jbm.a.35222

    Article  Google Scholar 

  69. Suwandi JS, Toes REM, Nikolic T, Roep BO (2015) Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells. Clin Exp Rheumatol 33:97–103. https://doi.org/10.1002/jbm.a

    Google Scholar 

  70. Meng L, Arnoult O, Smith M, Wnek GE (2012) Electrospinning of in situ crosslinked collagen nanofibers. J Mater Chem 22(37):19412–19417. https://doi.org/10.1039/c2jm31618h

    Article  CAS  Google Scholar 

  71. Wu CH, Chen S, Shortreed MR, Kreitinger GM, Yuan Y, Frey BL, Zhang Y, Mirza S, Cirillo LA, Olivier M, Smith LM (2011) Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification. PLoS One 6(10):e26217. https://doi.org/10.1371/journal.pone.0026217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gough JE, Scotchford CA, Downes S (2002) Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res 61(1):121–130. https://doi.org/10.1002/jbm.10145

    Article  CAS  PubMed  Google Scholar 

  73. Stokols S, Tuszynski MH (2006) Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443–451. https://doi.org/10.1016/j.biomaterials.2005.06.039

    Article  CAS  PubMed  Google Scholar 

  74. Boecker AH, Van Neerven SGA, Scheffel J, Tank J, Altinova H, Seidensticker K, Deumens R, Tolba R, Weis J, Brook GA, Pallua N, Bozkurt A (2016) Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model. Eur J Neurosci 43:404–416. https://doi.org/10.1111/ejn.13052

    Article  PubMed  Google Scholar 

  75. Bozkurt A, Boecker A, Tank J, Altinova H, Deumens R, Dabhi C, Tolba R, Weis J, Brook GA, Pallua N, Van Neerven SGA (2016) Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold. Biomaterials 75:112–122. https://doi.org/10.1016/j.biomaterials.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  76. Lv Y, Nan P, Chen G, Sha Y, Xia B, Yang L (2015) In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells. Biotechnol Lett 37:2497–2506. https://doi.org/10.1007/s10529-015-1939-5

    Article  CAS  PubMed  Google Scholar 

  77. Kavet R (2015) Dosimetric uncertainties. Health Phys 109:556–565. https://doi.org/10.1097/HP.0000000000000351

    Article  CAS  PubMed  Google Scholar 

  78. Koppes AN, Nordberg AL, Paolillo G, Goodsell N, Darwish H, Zhang L, Thompson DM (2013) Electrical stimulation of Schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng Part A 20:130924230853000. https://doi.org/10.1089/ten.TEA.2013.0012

    Article  Google Scholar 

  79. Ristic D, Ellrich J (2014) Innocuous peripheral nerve stimulation shifts stimulus-response function of painful laser stimulation in man. Neuromodulation 17:686–694. https://doi.org/10.1111/ner.12133

    Article  PubMed  Google Scholar 

  80. Chen G, Lv Y, Dong C, Yang L (2015) Effect of internal structure of collagen/hydroxyapatite scaffold on the osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 10:99–108. https://doi.org/10.2174/1574888x09666140812112631

    Article  CAS  PubMed  Google Scholar 

  81. Cui W, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11:14108. https://doi.org/10.1088/1468-6996/11/1/014108

    Article  Google Scholar 

  82. Gu P, Joseph MM, Bs U, Shiji R, Tt S (2015) Biomedical applications of natural polymer based nanofibrous scaffolds. Int J Med Nano Res 2(1):1–9. 10.23937/2378-3664/1410010

    Article  Google Scholar 

  83. Simpson DG, Jha BS, Ayres CE, Bowman JR, Telemeco TA, Sell SA, Bowlin GL (2011) Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomater 2011:1–15. https://doi.org/10.1155/2011/348268

    Google Scholar 

  84. Yannas IV (2000) Regeneration templates. In: Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  85. Mienaltowski MJ, Birk D (2014) Structure, physiology, and biochemistry of collagens. Prog Heritable Soft Connect Tissue Dis 802:5–29

    Article  CAS  Google Scholar 

  86. Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci U S A 103:12285–12290. https://doi.org/10.1073/pnas.0603216103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gomes-Barrena E, Fernandes-Baillo N (2001) La rodilla en el animal de experimentación, morfología y cinemática comparadas y su applicación a los modelos experimentales de rodilla. Rev Ortop. Trauma 35:100–112

    Google Scholar 

  88. Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 3(2):1995–2000. https://doi.org/10.2225/vol3-issue2-fulltext-5

    Article  Google Scholar 

  89. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161. https://doi.org/10.1016/S0167-7799(03)00033-7

    Article  CAS  PubMed  Google Scholar 

  90. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689. https://doi.org/10.1089/107632701753337645

    Article  CAS  PubMed  Google Scholar 

  91. Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298:504–520. https://doi.org/10.1002/mame.201200290

    Article  CAS  Google Scholar 

  92. Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostructure Chem 6:207–213. https://doi.org/10.1007/s40097-016-0189-y

    Article  Google Scholar 

  93. Doyle JJ, Choudhari S, Ramakrishna S, Babu RP (2013) Electrospun nanomaterials: biotechnology, food, water, environment, and energy. Conf Pap Mater Sci 2013:1–14. https://doi.org/10.1155/2013/269313

    Google Scholar 

  94. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. WIREs Nanomed Nanobiotechnol 2:510–525. https://doi.org/10.1002/wnan.100

    Article  CAS  Google Scholar 

  95. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26:37–46. https://doi.org/10.1016/j.biomaterials.2004.01.063

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Almodóvar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castilla-Casadiego, D.A., Rivera-Martínez, C.A., Quiñones-Colón, B.A., Almodóvar, J. (2017). Electrospun Collagen Scaffolds. In: Almodovar, J. (eds) Electrospun Biomaterials and Related Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70049-6_2

Download citation

Publish with us

Policies and ethics