Biofuels from Microalgae: Biomethane

  • Fabiana Passos
  • Cesar Mota
  • Andrés Donoso-Bravo
  • Sergi Astals
  • David Jeison
  • Raúl Muñoz
Part of the Green Energy and Technology book series (GREEN)


The high cost of axenic microalgae cultivation in photobioreactors limits nowadays the potential uses of microalgal biomass as a feedstock for the production of biodiesel or bioethanol. In this context, microalgae-based wastewater treatment (WWT) has emerged as the leading method of cultivation for supplying microalgae at low cost and low environmental impacts, while achieving sewage treatment. Nonetheless, the year-round dynamics in microalgae population and cell composition when grown in WWTPs restrict the use of this low-quality biomass to biogas production via anaerobic digestion. Although the macromolecular composition of the microalgae produced during wastewater treatment is similar to that of sewage sludge, the recalcitrant nature of microalgae cell walls requires an optimisation of pretreatment technologies for enhancing microalgae biodegradability. In addition, the low C/N ratio, the high water content and the suspended nature of microalgae suggest that microalgal biomass will also benefit from anaerobic co-digestion with carbon-rich substrates, which constitutes a field for further research. Photosynthetic microalgae growth can also support an effective CO2 capture and H2S oxidation from biogas, which would generate a high-quality biomethane complying with most international regulations for injection into natural gas grids or use as autogas. This book chapter will critically review the most recent advances in biogas production from microalgae, with a special focus on pretreatment technologies, co-digestion opportunities, modelling strategies, biogas upgrading and process microbiology.


Anaerobic co-digestion Biogas upgrading Microbiology Modelling Pretreatments 



The financial support from MINECO and the FEDER funding programme is gratefully acknowledged (CTM2015-70442-R). The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 689242. David Jeison acknowledges the support provided by CRHIAM Centre (CONICYT/FONDAP/15130015).


  1. Abatzoglou, N., & Boivin, S. (2009). A review of biogas purification processes. Biofuels Bioproducts Biorefining, 3, 42–71.CrossRefGoogle Scholar
  2. Abo-Shady, A. M., Mohamed., Y. A., & Lasheen T. (1993). Chemical composition of the cell wall in some green algae species. Biologia Plantarum, 35(4), 629–632.CrossRefGoogle Scholar
  3. Accettola, F., Guebitz, G., & Schoeftner, R. (2008). Siloxane removal from biogas by biofiltration: Biodegradation studies. Clean Technologies and Environmental Policy, 10, 211–218.CrossRefGoogle Scholar
  4. Alzate, M. E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2012). Biochemical methane potential of microalgae: Influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresource Technology, 123, 488–494.CrossRefGoogle Scholar
  5. Angelidaki I., & Ahring B. K., 2000. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41(3), 189–194.Google Scholar
  6. Arnell, M., Astals, S., Åmand, L., Batstone, D. J., Jensen, P. D., & Jeppsson, U. (2016). Modelling anaerobic co-digestion in Benchmark Simulation Model No. 2: Parameter estimation, substrate characterisation and plant-wide integration. Water Research, 98, 138–146.CrossRefGoogle Scholar
  7. Astals, S., Batstone, D. J., Mata-Alvarez, J., & Jensen, P. D. (2014). Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresource Technology, 169, 421–427.CrossRefGoogle Scholar
  8. Bailón, L., & Hinge, J. (2012). Report: Biogas and bio-syngas upgrading. Danish Technological Institute.
  9. Batstone, D. J. (2006). Mathematical modelling of anaerobic reactors treating domestic wastewater: Rational criteria for model use. Review Environment Science Bio/Technology, 5, 57–71.CrossRefGoogle Scholar
  10. Batstone, D. J., & Keller, J. (2002). Industrial applications of the IWA anaerobic digestion. Water Science and Technology, 1, 199–206.Google Scholar
  11. Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: Applications and future needs. Rev: Environment Science Bio/Technology. Scholar
  12. Bauer, F., Hulteberg, C., Persson, T., & Tamm, D. (2013). Biogas upgrading—Review of commercial technologies. SGC Rapport 2013:270. SGC.
  13. Beltrán, C., Jeison, D., Fermoso, F. G., & Borja, R. (2016). Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature. Journal of Environmental Science and Health—Part A, 51(10), 847–850.CrossRefGoogle Scholar
  14. Blumreisinger, M., Meindl, D., & Loos, E. (1983). Cell wall composition of chlorococcal algae. Phytochemistry, 22(7), 1603–1604.CrossRefGoogle Scholar
  15. Bohutskyi, P., Betenbaugh, M. J., & Bouwer, E. J. (2014). The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technology, 155, 366–372.CrossRefGoogle Scholar
  16. Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.CrossRefGoogle Scholar
  17. Capson-Tojo, G., Torres, A., Munoz, R., Bartacek, J., & Jeison, D. (2017). Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N-gaditana for methane production. Renewable Energy, 105, 539–546.CrossRefGoogle Scholar
  18. Cea-Barcia, G., Moreno, G., & Buitron, G. (2015). Anaerobic digestion of mixed microalgae cultivated in secondary effluent under mesophilic and thermophilic conditions. Water Science and Technology, 72(8), 1398–1403.CrossRefGoogle Scholar
  19. Chen, P. H., & Oswald, W. J. (1998). Thermochemical pretreatment for algal fermentation. Environment International, 24(8), 889–897.CrossRefGoogle Scholar
  20. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  21. Díaz, I., Pérez, C., Alfaro, N., & Fdz-Polanco, F. (2015). A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresource Technology, 185, 246–253.CrossRefGoogle Scholar
  22. Derenne, S., Largeau, C., Berkaloff, C., Rousseau, B., Wilhelm, C., & Hatcher, P. G. (1992). Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eucaryotum. Phytochemistry, 31(6), 1923–1929.CrossRefGoogle Scholar
  23. Domozych, D. S., Stewart, K. D., & Mattox, K. R. (1980). The comparative aspects of cell wall chemistry in the green algae (Chlorophyta). Journal of Molecular Evolution, 15(1), 1–12, ISSN: 1432-1432.CrossRefGoogle Scholar
  24. Donoso-Bravo, A., Mailier, J., Martin, C., Rodríguez, J., Aceves-Lara, C. A., & Vande Wouwer, A. (2011). Model selection, identification and validation in anaerobic digestion: A review. Water Research, 45, 5347–5364.CrossRefGoogle Scholar
  25. Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160, 607–614.CrossRefGoogle Scholar
  26. Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88(10), 3454–3463.CrossRefGoogle Scholar
  27. Fernandez-Rodriguez, M. J., Rincon, B., Fermoso, F. G., Jimenez, A. M., & Borja, R. (2014). Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresource Technology, 157, 263–269.CrossRefGoogle Scholar
  28. Gabriel, D., Deshusses, M. A., & Gamisans, X. (2013). Desulfurization of biogas in biotrickling filter. In: John Wiley & Sons (Ed.), Air pollution prevention and control: Bioreactors and bioenergy (1st ed., pp. 513–523). Wiley: Hoboken.CrossRefGoogle Scholar
  29. Gelin, F., Boogers, I., Noordeloos, A. A. M., Damsté J. S. S., Riegman, R., & De Leeuw J. W. (1997). Resistant biomacromolecules in marine microalgae of the classes eustigmatophyceae and chlorophyceae: Geochemical implications. Organic Geochemistry, 26(11–12), 659–675.CrossRefGoogle Scholar
  30. Giménez, J. B., Aguado, D., Bouzas, A., Ferrer, J., & Seco, A. (2017). Use of rumen microorganisms to boost the anaerobic biodegradability of microalgae. Algal Research, 24, 309–316.CrossRefGoogle Scholar
  31. Golueke, C. G., Oswald, W. J., & Gotaas, H. B. (1957). Anaerobic digestion of Algae. Applied Microbiology, 5(1), 47–55.Google Scholar
  32. González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of micro- algae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels, Bioproducts and Biorefining, 6(2), 205–218.CrossRefGoogle Scholar
  33. Grobbelaar, J. U. (2004). Algal nutrition. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology, Hoboken: Wiley-Blackwell.Google Scholar
  34. Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328–337.CrossRefGoogle Scholar
  35. Hidaka, T., Takabe, Y., Tsumori, J., & Minamiyama, M. (2017). Characterization of microalgae cultivated in continuous operation combined with anaerobic co-digestion of sewage sludge and microalgae. Biomass and Bioenergy, 99, 139–146.CrossRefGoogle Scholar
  36. Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75, 692–709.CrossRefGoogle Scholar
  37. Kadouri, A., Derenne, S., Largeau, C., Casadevall, E., & Berkaloff, C. (1988). Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry, 27(2), 551–557.CrossRefGoogle Scholar
  38. Kinnunen, V., Craggs, R., & Rintala, J. (2014). Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating volume reactor. Water Research, 57, 247–257.CrossRefGoogle Scholar
  39. Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7–26.CrossRefGoogle Scholar
  40. Lardon, L., Helias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43(17), 6475–6481.CrossRefGoogle Scholar
  41. Lee, E., Cumberbatch, J., Wang, M., & Zhang, Q. (2017). Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae. Bioresource technology, 228, 9–17.CrossRefGoogle Scholar
  42. Loos, E., & Meindl, D. (1982). Composition of the cell wall of Chlorellafusca. Planta, 156(3), 270–273.Google Scholar
  43. Mahdy, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2015). Protease pretreated Chlorella vulgaris biomass conversion to methane via semi-continuous anaerobic digestion. Fuel, 158, 35–41.CrossRefGoogle Scholar
  44. Mahdy, A., Fotidis, I. A., Mancini, E., Ballesteros, M., González-Fernández, C., & Angelidaki, I. (2017). Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresource Technology, 225, 272–278.CrossRefGoogle Scholar
  45. Mairet, F., Bernard, O., Cameron, E., Ras, M., Lardon, L., Steyer, J.-P., et al. (2012). Three-reaction model for the anaerobic digestion of microalgae. Biotechnology and Bioengineering, 109, 415–425.CrossRefGoogle Scholar
  46. Mairet, F., Bernard, O., Ras, M., Lardon, L., & Steyer, J.-P. (2011). Modeling anaerobic digestion of microalgae using ADM1. Bioresource Technology, 102, 6823–6829.CrossRefGoogle Scholar
  47. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.CrossRefGoogle Scholar
  48. Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.CrossRefGoogle Scholar
  49. Meier, L., Pérez, R., Azócar, L., Rivas, M., & Jeison, D. (2015). Photosynthetic CO2 uptake by microalgae: An attractive tool for biogas upgrading. Biomass and Bioenergy, 73, 102–109.CrossRefGoogle Scholar
  50. Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972.CrossRefGoogle Scholar
  51. Muñoz, R., Meier, L., Diaz, I., & Jeison, D. (2015). A critical review on the state-of-the-art of physical/chemical and biological technologies for an integral biogas upgrading. Reviews in Environmental Science and Biotechnology, 14, 727–759.CrossRefGoogle Scholar
  52. Neumann, P., Torres, A., Fermoso, F. G., Borja, R., & Jeison, D. (2015). Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. International Biodeterioration and Biodegradation, 100, 85–88.CrossRefGoogle Scholar
  53. Okuda, K. (2002). Structure and phylogeny of cell coverings. Journal of Plant Research, 115, 283–288.CrossRefGoogle Scholar
  54. Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361.CrossRefGoogle Scholar
  55. Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35–42.CrossRefGoogle Scholar
  56. Park, S., & Li, Y. (2012). Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 111, 42–48.CrossRefGoogle Scholar
  57. Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014a). Pretreatment of microalgae to improve biogas production: A review. Bioresource Technology, 172, 403–412.CrossRefGoogle Scholar
  58. Passos, F., Hernández-Mariné, M., García, J., & Ferrer, I. (2014b). Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Research, 49, 351–359.CrossRefGoogle Scholar
  59. Passos, F., & Ferrer, I. (2014). Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environmental Science and Technology, 48(12), 7171–7178.CrossRefGoogle Scholar
  60. Passos, F., Gutiérrez, R., Brockmann, D., Steyer, J. P., García, J., & Ferrer, I. (2015). Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Research, 10, 55–63.CrossRefGoogle Scholar
  61. Passos, F., & Ferrer, I. (2015). Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Research, 68, 364–373.CrossRefGoogle Scholar
  62. Peng, S., & Colosi, L. M. (2016). Anaerobic digestion of algae biomass to produce energy during wastewater treatment. Water Environment Research, 88(1), 29–39.CrossRefGoogle Scholar
  63. Rajagopal, R., Massé, D.I., Singh, G. 2013. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641.
  64. Rizwan, M., Lee, J. H., & Gani, R. (2015). Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges. Applied Energy, 150, 69–79.CrossRefGoogle Scholar
  65. Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., & Olabi, A. G. (2015). Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 138, 765–779.CrossRefGoogle Scholar
  66. Rusten, B., & Sahu, A. K. (2011). Microalgae growth for nutrient recovery from sludge liquor and production of renewable bioenergy. Water Science and Technology, 64, 1195–1201.CrossRefGoogle Scholar
  67. Sahu, A. K., Siljudalen, J., Trydal, T., & Rusten, B. (2013). Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. Journal of Environmental Management, 122, 113–120.CrossRefGoogle Scholar
  68. Sanz, J. L., Rojas, P., Morato, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 168, 1013–1021.CrossRefGoogle Scholar
  69. Schwede, S., Kowalczyk, A., Gerber, M., & Span, R. (2013). Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresource Technology, 148, 428–435.CrossRefGoogle Scholar
  70. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21(3), 277–286.CrossRefGoogle Scholar
  71. Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409–416.CrossRefGoogle Scholar
  72. Simpson, A. J., Zang, X., Kramer, R., & Hatcher, P. G. (2003). New insights on the structure of algaenan from Botryoccocus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques. Phytochemistry, 62(5), 96–783.CrossRefGoogle Scholar
  73. Solé-Bundó, M., Carrère, H., Garfí, M., & Ferrer, I. (2017). Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Research, 24, 199–206.CrossRefGoogle Scholar
  74. Stephens, E., Ross, I. L., King, Z., Mussgnug, J. H., Kruse, O., Posten, C., et al. (2010). An economic and technical evaluation of microalgal biofuels. Nature Biotechnology, 28(2), 126–128.CrossRefGoogle Scholar
  75. Tartakovsky, B., Lebrun, F. M., & Guiot, S. R. (2015). High-rate biomethane production from microalgal biomass in a UASB reactor. Algal Research-Biomass Biofuels and Bioproducts, 7, 86–91.Google Scholar
  76. Thrän, D., Persson, T., Daniel-Gromke, J., Ponitka, J., Seiffert, M., Boldwin, D., & et al. (2014). Biomethane—status and factors affecting market development and trade. IEA.Google Scholar
  77. Toledo-Cervantes, A., Estrada, J. M., Lebrero, R., & Muñoz, R. (2017). A comparative analysis of biogas upgrading technologies: Photosynthetic versus physical/chemical processes. Algal Research, 25, 237–243.CrossRefGoogle Scholar
  78. Tomei, M. C., Braguglia, C. M., Cento, G., & Mininni, G. (2009). Modeling of anaerobic digestion of sludge. Critical Reviews in Environment Science and Technology, 39, 1003–1051.CrossRefGoogle Scholar
  79. Torres, A., Fermoso, F.G., Rincón, B., Bartacek, J., Borja, R., & Jeison, D. (2013). Challenges for cost-effective microalgae anaerobic digestion. In R. Chamy & F. Rosenkranz (Eds.) Biodegradation—Engineering and Technology. Intech: Croatia.Google Scholar
  80. Wang, M., Lee, E., Zhang, Q., & Ergas, S. J. (2016a). Anaerobic co-digestion of swine manure and microalgae chlorella sp.: Experimental studies and energy analysis. Bioenergy Research, 9(4), 1204–1215.CrossRefGoogle Scholar
  81. Wang, M., Lee, E., Dilbeck, M.P., Liebelt, M., & Zhang, Q., Ergas, S. J. (2016b). Thermal pretreatment of microalgae for biomethane production: Experimental studies, kinetics and energy analysis. Journal of Chemical Technology and Biotechnology.
  82. Ward, A. J., Lewis, D. M., & Green, B. (2014). Anaerobic digestion of algae biomass: A review. Algal Research-Biomass Biofuels and Bioproducts, 5, 204–214.Google Scholar
  83. Weyer, K. M., Bush, D. R., Darzins, A., & Willson, B. D. (2010). Theoretical maximum algal oil production. Bioenergy Research, 3(2), 204–213.CrossRefGoogle Scholar
  84. Yen, H. W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98(1), 130–134.CrossRefGoogle Scholar
  85. Yuan, X., Wang, M., Park, C., Sahu, A. K., & Ergas, S. J. (2012). Microalgae growth using high-strength wastewater followed by anaerobic co-digestion. Water Environment Research, 84(5), 396–404.CrossRefGoogle Scholar
  86. Zamalloa, C., Boon, N., & Verstraete, W. (2012a). Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Applied Energy, 92, 733–738.CrossRefGoogle Scholar
  87. Zamalloa, C., De Vrieze, J., Boon, N., & Verstraete, W. (2012b). Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 93(2), 859–869.CrossRefGoogle Scholar
  88. Zhen, G., Lu, X., Kobayashi, T., Kumar, G., & Xu, K. (2016). Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chemical Engineering Journal, 299, 332–341.CrossRefGoogle Scholar
  89. Zhong, W., Chi, L., Luo, Y., Zhang, Z., Zhang, Z., & Wu, W. M. (2013). Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresource Technology, 134, 264–270.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fabiana Passos
    • 1
  • Cesar Mota
    • 1
  • Andrés Donoso-Bravo
    • 2
  • Sergi Astals
    • 3
  • David Jeison
    • 4
  • Raúl Muñoz
    • 5
  1. 1.Department of Sanitary and Environmental EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Inria ChileSantiagoChile
  3. 3.Advanced Water Management CentreThe University of QueenslandSt. LuciaAustralia
  4. 4.Biochemical Engineering SchoolPontificia Universidad Católica de ValparaísoValparaísoChile
  5. 5.Department of Chemical Engineering and Environmental TechnologyUniversity of ValladolidValladolidSpain

Personalised recommendations