Skip to main content

Neurobiological Approaches to Interpersonal Coordination: Achievements and Pitfalls

  • Chapter
  • First Online:
Neuroscience and Social Science

Abstract

Although spontaneous interpersonal coordination was originally reported in the early 1960s, the accurate measurement of this phenomenon is very recent. Sophisticated methods used by dynamic systems theory and social neuroscientific perspectives have allowed capturing and analyzing patterns of neural and bodily coordination between interactants, favoring a deeper understanding of the factors and processes involved. In the present chapter, we review neurobiological evidence on interpersonal coordination and acknowledge that, despite the use of cutting-edge technology, extant findings have not yet resulted in an understanding of real-life interpersonal coordination. Theoretical and methodological efforts in social neuroscience aimed to explore interpersonal dynamics through joint tasks have been tacitly based on an individualistic approach to social cognition that underestimates the social nature of interactional phenomena. In turn, dynamic systems theory tends to approach human interaction in the same way as any complex system, disregarding the specific features of social life. We argue instead that interpersonal coordination should be studied under the assumption that people engage in meaningful interactions, so that its study requires the design of more ecological paradigms integrating the benefits of high-precision temporal recordings and a holistic account of the brain and bodily dynamics that occur during real human interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, for the dynamic systems perspective, the concept of “ecology” is far removed from the traditional notion that denotes the study of the way human beings conceive, value, use, and impact their environment.

References

  1. Bernieri FJ, Reznick JS, Rosenthal R. Synchrony, pseudosynchrony, and dissynchrony: measuring the entrainment process in mother-infant interactions. J Pers Soc Psychol. 1988;54(2):243–53. https://doi.org/10.1037/0022-3514.54.2.243.

    Article  Google Scholar 

  2. Condon WS, Ogston WD. Sound film analysis of normal and pathological behavior patterns. J Nerv Ment Dis. 1966;143(4):338–47. https://doi.org/10.1097/00005053-196610000-00005.

    Article  PubMed  Google Scholar 

  3. Pickering MJ, Garrod S. Toward a mechanistic psychology of dialogue. Behav Brain Sci. 2004;27(2):169–190.-226. https://doi.org/10.1017/S0140525X04000056.

    PubMed  Google Scholar 

  4. Giles H. Accent mobility: a model and some data. Anthropol Linguist. 1973;15(2):87–105. https://doi.org/10.1111/j.1460-2466.2008.00398.x.

    Google Scholar 

  5. Bourhis RY, Giles H. The language of intergroup distinctiveness. In: Giles H, editor. Language, ethnicity and intergroup relations. London: Academic; 1977. p. 119–35.

    Google Scholar 

  6. Natale M. Convergence of mean vocal intensity in dyadic communication as a function of social desirability. J Pers Soc Psychol. 1975;32(5):790–804. https://doi.org/10.1037/0022-3514.32.5.790.

    Article  Google Scholar 

  7. Bilous FR, Krauss RM. Dominance and accommodation in the conversational behaviours of same- and mixed-gender dyads. Lang Commun. 1988;8(3-4):183–94. https://doi.org/10.1016/0271-5309(88)90016-X.

    Article  Google Scholar 

  8. Cappella JN, Planalp S. Talk and silence sequences in informal conversations III: interspeaker influence. Hum Commun Res. 1981;7(2):117–32. https://doi.org/10.1111/j.1468-2958.1981.tb00564.x.

    Article  Google Scholar 

  9. Garrod S, Anderson A. Saying what you mean in dialogue: a study in conceptual and semantic co-ordination. Cognition. 1987;27(2):181–218. https://doi.org/10.1016/0010-0277(87)90018-7.

    Article  PubMed  Google Scholar 

  10. Garrod S, Doherty G. Conversation, co-ordination and convention: an empirical investigation of how groups establish linguistic conventions. Cognition. 1994;53(3):181–215. https://doi.org/10.1016/0010-0277(94)90048-5.

    Article  PubMed  Google Scholar 

  11. Street RL. Speech convergence and speech evaluation in fact-finding interviews. Hum Commun Res. 1984;11(2):139–69. https://doi.org/10.1111/j.1468-2958.1984.tb00043.x.

    Article  Google Scholar 

  12. Giles H, Coupland J, Coupland N. Contexts of accommodation: developments in applied sociolinguistics. Cambridge: Cambridge University Press; 1991. https://doi.org/10.1017/CBO9780511663673 .

    Book  Google Scholar 

  13. Pardo JS. On phonetic convergence during conversational interaction. J Acoust Soc Am. 2006;119(4):2382–93. https://doi.org/10.1121/1.2178720.

    Google Scholar 

  14. Bock JK. Syntactic persistence in language production. Cogn Psychol. 1986;18(3):355–87. https://doi.org/10.1016/0010-0285(86)90004-6.

    Article  Google Scholar 

  15. Branigan HP, Pickering MJ, Cleland AA. Syntactic co-ordination in dialogue. Cognition. 2000;75(B):13–25. https://doi.org/10.1016/S0010-0277(99)00081-5.

    Article  Google Scholar 

  16. Mcfarland DH. Respiratory markers of conversational interaction. J Speech Lang Hear Res. 2001;44(44):128–43. https://doi.org/10.1044/1092-4388(2001/012).

    Article  PubMed  Google Scholar 

  17. Konvalinka I, Roepstorff A. The two-brain approach: how can mutually interacting brains teach us something about social interaction? Front Hum Neurosci. 2012;6:215. https://doi.org/10.3389/fnhum.2012.00215.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gottman JM, Levenson RW. A valid procedure for obtaining self-report of affect in marital interaction. J Consult Clin Psychol. 1985;53(2):151–60. https://doi.org/10.1037/0022-006X.53.2.151.

    Article  PubMed  Google Scholar 

  19. Thomas KA, Burr RL, Spieker S, Lee J, Chen J. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony. Early Hum Dev. 2014;90(12):885–90. https://doi.org/10.1016/j.earlhumdev.2014.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mitkidis P, McGraw JJ, Roepstorff A, Wallot S. Building trust: heart rate synchrony and arousal during joint action increased by public goods game. Physiol Behav. 2015;149:101–6. https://doi.org/10.1016/j.physbeh.2015.05.033.

    Article  PubMed  Google Scholar 

  21. Strang AJ, Funke GJ, Russell SM, Dukes AW, Middendorf MS. Physio-behavioral coupling in a cooperative team task: contributors and relations. J Exp Psychol Hum Percept Perform. 2014;40(1):145–58. https://doi.org/10.1037/a0033125.

    Article  PubMed  Google Scholar 

  22. Chatel-Goldman J, Congedo M, Jutten C, Schwartz J-L. Touch increases autonomic coupling between romantic partners. Front Behav Neurosci. 2014;8:95. https://doi.org/10.3389/fnbeh.2014.00095.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mønster D, Håkonsson DD, Eskildsen JK, Wallot S. Physiological evidence of interpersonal dynamics in a cooperative production task. Physiol Behav. 2016;156:24–34. https://doi.org/10.1016/j.physbeh.2016.01.004.

    Article  PubMed  Google Scholar 

  24. Saito DN, Tanabe HC, Izuma K, et al. “Stay tuned”: inter-individual neural synchronization during mutual gaze and joint attention. Front Integr Neurosci. 2010;4:1–12. https://doi.org/10.3389/fnint.2010.00127.

    Article  Google Scholar 

  25. Lindenberger U, Li S-C, Gruber W, Müller V. Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neurosci. 2009;10(1):22. https://doi.org/10.1186/1471-2202-10-22.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Astolfi L, Toppi J, De Vico Fallani F, et al. Neuroelectrical hyperscanning measures simultaneous brain activity in humans. Brain Topogr. 2010;23(3):243–56. https://doi.org/10.1007/s10548-010-0147-9.

    Article  PubMed  Google Scholar 

  27. Yun K, Watanabe K, Shimojo S. Interpersonal body and neural synchronization as a marker of implicit social interaction. Sci Rep. 2012;2:959. https://doi.org/10.1038/srep00959.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Konvalinka I, Bauer M, Stahlhut C, Hansen LK, Roepstorff A, Frith CD. Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains. NeuroImage. 2014;94:79–88. https://doi.org/10.1016/j.neuroimage.2014.03.003.

    Article  PubMed  Google Scholar 

  29. Khalsa SS, Schiffman JE, Bystritsky A. Treatment-resistant OCD: options beyond first-line medications. Curr Psychiatr Ther. 2011;10(11):44–52. https://doi.org/10.1371/journal.pone.0012166.

    Google Scholar 

  30. Cui X, Bryant DM, Reiss AL. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. NeuroImage. 2012;59(3):2430–7. https://doi.org/10.1016/j.neuroimage.2011.09.003.

    Article  PubMed  Google Scholar 

  31. Liu T, Saito H, Oi M. Obstruction increases activation in the right inferior frontal gyrus. Soc Neurosci. 2015;919:1–9. https://doi.org/10.1080/17470919.2015.1088469.

    Google Scholar 

  32. Osaka N, Minamoto T, Yaoi K, Azuma M, Shimada YM, Osaka M. How two brains make one synchronized mind in the inferior frontal cortex: FNIRS-based hyperscanning during cooperative singing. Front Psychol. 2015;6:1811. https://doi.org/10.3389/fpsyg.2015.01811.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheng X, Li X, Hu Y. Synchronous brain activity during cooperative exchange depends on gender of partner: a fNIRS-based hyperscanning study. Hum Brain Mapp. 2015;36(6):2039–48. https://doi.org/10.1002/hbm.22754.

    Article  PubMed  Google Scholar 

  34. Nozawa T, Sasaki Y, Sakaki K, Yokoyama R, Kawashima R. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. NeuroImage. 2016;133:484–97. https://doi.org/10.1016/j.neuroimage.2016.03.059.

    Article  PubMed  Google Scholar 

  35. Cacioppo S, Zhou H, Monteleone G, et al. You are in sync with me: neural correlates of interpersonal synchrony with a partner. Neuroscience. 2014;277:842–58. https://doi.org/10.1016/j.neuroscience.2014.07.051.

    Article  PubMed  Google Scholar 

  36. Earls HA, Englander ZA, Morris JP. Perception of race-related features modulates neural activity associated with action observation and imitation. Neuroreport. 2013;24(8):410–3. https://doi.org/10.1097/WNR.0b013e328360a168.

    Article  PubMed  Google Scholar 

  37. Stephens GJ, Silbert LJ, Hasson U. Speaker-listener neural coupling underlies successful communication. Proc Natl Acad Sci U S A. 2010;107(32):14425–30. https://doi.org/10.1073/pnas.1008662107.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bernieri FJ, Rosenthal R. Interpersonal coordination: behavior matching and interactional synchrony. In: Feldman RS, Rimé B, editors. Fundamentals of nonverbal behavior: studies in emotion & social interaction. New York: Cambridge University Press; 1991. p. 401–32. https://doi.org/10.1017/CBO9781107415324.004.

    Google Scholar 

  39. Del-Monte J, Capdevielle D, Varlet M, et al. Social motor coordination in unaffected relatives of schizophrenia patients: a potential intermediate phenotype. Front Behav Neurosci. 2013;7:137. https://doi.org/10.3389/fnbeh.2013.00137.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Llobera J, Charbonnier C, Chagué S, et al. The subjective sensation of synchrony: an experimental study. PLoS One. 2016;11(2):e0147008. https://doi.org/10.1371/journal.pone.0147008.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Marmelat V, Delignières D. Strong anticipation: complexity matching in interpersonal coordination. Exp Brain Res. 2012;222(1–2):137–48. https://doi.org/10.1007/s00221-012-3202-9.

    Article  PubMed  Google Scholar 

  42. Miles LK, Griffiths JL, Richardson MJ, Macrae CN. Too late to coordinate: contextual influences on behavioral synchrony. Eur J Soc Psychol. 2010;40(1):52–60. https://doi.org/10.1002/ejsp.721.

    Google Scholar 

  43. Ouwehand PEW, Peper CLE. Does interpersonal movement synchronization differ from synchronization with a moving object? Neurosci Lett. 2015;606:177–81. https://doi.org/10.1016/j.neulet.2015.08.052.

    Article  PubMed  Google Scholar 

  44. Preissmann D, Charbonnier C, Chagué S, et al. A motion capture study to measure the feeling of synchrony in romantic couples and in professional musicians. Front Psychol. 2016;7:1673. https://doi.org/10.3389/fpsyg.2016.01673.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Varlet M, Stoffregen TA, Chen F-C, Alcantara C, Marin L, Bardy BG. Just the sight of you: postural effects of interpersonal visual contact at sea. J Exp Psychol Hum Percept Perform. 2014;40(6):2310–8. https://doi.org/10.1037/a0038197.

    Article  PubMed  Google Scholar 

  46. Schmidt RC, Fitzpatrick P. The origin of the ideas of interpersonal synchrony and synergies. In: Passos P, Davids K, Chow JY, editors. Interpersonal coordination and performance in social systems. New York: Routledge; 2016. p. 17–31.

    Google Scholar 

  47. Nordham C, Kelso JAS. The nature of interpersonal coordination. In: Passos P, Davids K, Chow JY, editors. Interpersonal coordination and performance in social systems. New York: Routledge; 2016. p. 32–52.

    Google Scholar 

  48. Marsh KL, Richardson MJ, Schmidt RC. Social connection through joint action and interpersonal coordination. Top Cogn Sci. 2009;1(2):320–39. https://doi.org/10.1111/j.1756-8765.2009.01022.x.

    Article  PubMed  Google Scholar 

  49. Rio KW, Warren WH. Interpersonal coordination in biological systems: the emergence of collective locomotion. In: Passos P, Davids K, Chow JY, editors. Interpersonal coordination and performance in social systems. New York: Routledge; 2016. p. 3–16.

    Google Scholar 

  50. Schmidt RC, Richardson MJ. Dynamics of interpersonal coordination. In: Fuchs A, Jirsa VK, editors. Understanding complex systems, vol. 2008. Berlin: Springer; 2008. p. 281–308. https://doi.org/10.1007/978-3-540-74479-5_14.

    Google Scholar 

  51. Amazeen PG, Schmidt RC, Turvey MT. Frequency detuning of the phase entrainment dynamics of visually coupled rhythmic movements. Biol Cybern. 1995;72(6):511–8. https://doi.org/10.1007/BF00199893.

    Article  PubMed  Google Scholar 

  52. Coey C, Varlet M, Schmidt RC, Richardson MJ. Effects of movement stability and congruency on the emergence of spontaneous interpersonal coordination. Exp Brain Res. 2011;211(3-4):483–93. https://doi.org/10.1007/s00221-011-2689-9.

    Article  PubMed  Google Scholar 

  53. Fuchs A, Jirsa VK, Haken H, Kelso JAS. Extending the HKB model of coordinated movement to oscillators with different eigen frequencies. Biol Cybern. 1996;74(1):21–30. https://doi.org/10.1007/BF00199134.

    Article  PubMed  Google Scholar 

  54. Jeka JJ, Kelso JA. Manipulating symmetry in the coordination dynamics of human movement. J Exp Psychol Hum Percept Perform. 1995;21(2):360–74. https://doi.org/10.1037/0096-1523.21.2.360.

    Article  PubMed  Google Scholar 

  55. Richardson MJ, Marsh KL, Isenhower RW, Goodman JRL, Schmidt RC. Rocking together: dynamics of intentional and unintentional interpersonal coordination. Hum Mov Sci. 2007;26(6):867–91. https://doi.org/10.1016/j.humov.2007.07.002.

    Article  PubMed  Google Scholar 

  56. Richardson MJ, Marsh KL, Schmidt RC. Effects of visual and verbal interaction on unintentional interpersonal coordination. J Exp Psychol Hum Percept Perform. 2005;31(1):62–79. https://doi.org/10.1037/0096-1523.31.1.62.

    Article  PubMed  Google Scholar 

  57. Sofianidis G, Hatzitaki V, Grouios G, Johannsen L, Wing A. Somatosensory driven interpersonal synchrony during rhythmic sway. Hum Mov Sci. 2012;31(3):553–66. https://doi.org/10.1016/j.humov.2011.07.007.

    Article  PubMed  Google Scholar 

  58. Sofianidis G, Elliott MT, Wing AM, Hatzitaki V. Interaction between interpersonal and postural coordination during frequency scaled rhythmic sway: the role of dance expertise. Gait Posture. 2015;41(1):209–16. https://doi.org/10.1016/j.gaitpost.2014.10.007.

    Article  PubMed  Google Scholar 

  59. Demos AP, Chaffin R, Begosh KT, Daniels JR, Marsh KL. Rocking to the beat: effects of music and partner’s movements on spontaneous interpersonal coordination. J Exp Psychol Gen. 2012;141(1):49–53. https://doi.org/10.1037/a0023843.

    Article  PubMed  Google Scholar 

  60. Nowicki L, Prinz W, Grosjean M, Repp BH, Keller PE. Mutual adaptive timing in interpersonal action coordination. Psychomusicol Music Mind Brain. 2013;23(1):6–20. https://doi.org/10.1037/a0032039.

    Article  Google Scholar 

  61. Lumsden J, Miles LK, Richardson MJ, Smith CA, Macrae CN. Who syncs? Social motives and interpersonal coordination. J Exp Soc Psychol. 2012;48(3):1–23. https://doi.org/10.1016/j.jesp.2011.12.007.

    Article  Google Scholar 

  62. Marsh KL, Isenhower RW, Richardson MJ, et al. Autism and social disconnection in interpersonal rocking. Front Integr Neurosci. 2013;7:4. https://doi.org/10.3389/fnint.2013.00004.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schmidt RC, Christianson N, Carello C, Baron R. Effects of social and physical variables on between-person visual coordination. Ecol Psychol. 1994;6(3):159–83. https://doi.org/10.1207/s15326969eco0603_1.

    Article  Google Scholar 

  64. Davis E, Greenberger E, Charles S, Chen C, Zhao L, Dong Q. Emotion experience and regulation in China and the United States: how do culture and gender shape emotion responding? Int J Psychol. 2012;47(3):230–9. https://doi.org/10.1080/00207594.2011.626043.

    Article  PubMed  Google Scholar 

  65. Zhao Z, Salesse RN, Gueugnon M, Schmidt RC, Marin L, Bardy BG. Attractive moving virtual agent elicits more stable interpersonal coordination. Hum Mov Sci. 2010;12(1976):90073. https://doi.org/10.1002/Ejsp.721.

    Google Scholar 

  66. Hammal Z, Cohn JF, George DT. Interpersonal coordination of headmotion in distressed couples. IEEE Trans Affect Comput. 2014;5(2):155–67. https://doi.org/10.1109/TAFFC.2014.2326408.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Paxton A, Dale R. Argument disrupts interpersonal synchrony. Q J Exp Psychol. 2013;66:2092–102. https://doi.org/10.1080/17470218.2013.853089.

    Article  Google Scholar 

  68. Tollefsen DP, Dale R, Paxton A. Alignment, transactive memory, and collective cognitive systems. Rev Philos Psychol. 2013;4(1):49–64. https://doi.org/10.1007/s13164-012-0126-z.

    Article  Google Scholar 

  69. Paxton A, Dale R. Frame-differencing methods for measuring bodily synchrony in conversation. Behav Res Methods. 2012;45(2):329–43. https://doi.org/10.3758/s13428-012-0249-2.

    Article  Google Scholar 

  70. Cacioppo JT, Ortigue S. Social Neuroscience: how a multidisciplinary field is uncovering the biology of human interactions. Cerebrum. 2011;2011:17.

    PubMed  PubMed Central  Google Scholar 

  71. Cacioppo JT, Berntson GG. Social psychological contributions to the decade of the brain. Doctrine of multilevel analysis. Am Psychol. 1992;47(8):1019–28. https://doi.org/10.1037/0003-066X.47.8.1019.

    Article  PubMed  Google Scholar 

  72. Kennedy DP, Adolphs R. The social brain in psychiatric and neurological disorders Daniel. Trends Cogn Sci. 2012;16(11):559–72. https://doi.org/10.1016/j.tics.2012.09.006.The.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Montague P. Hyperscanning: simultaneous fMRI during linked social interactions. NeuroImage. 2002;16(4):1159–64. https://doi.org/10.1006/nimg.2002.1150.

    Article  PubMed  Google Scholar 

  74. Newtson D, Hairfield J, Bloomingdale J, Cutino S. The structure of action and interaction. Soc Cogn. 1987;5(3):191–237. https://doi.org/10.1521/soco.1987.5.3.191.

    Article  Google Scholar 

  75. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E. Self-organization in biological systems. Princeton: Princeton University Press; 2003.

    Google Scholar 

  76. Fitzpatrick P, Schmidt R, Lockman J. Dynamical patterns in the development of clapping. Child Dev. 1996;67:2691–708. https://doi.org/10.2307/1131747.

    Article  Google Scholar 

  77. Haken H, Kelso JAS, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985;51(5):347–56. https://doi.org/10.1007/BF00336922.

    Article  PubMed  Google Scholar 

  78. Kelso JAS, Jeka JJ. Symmetry breaking dynamics of human multilimb coordination. J Exp Psychol Hum Percept Perform. 1992;18(3):645–68. https://doi.org/10.1037/0096-1523.18.3.645.

    Article  PubMed  Google Scholar 

  79. Kelso JA, Holt KG, Rubin P, Kugler PN. Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data. J Mot Behav. 1981;13(4):226–61. https://doi.org/10.1080/00222895.1981.10735251.

    Article  PubMed  Google Scholar 

  80. Rosenblum LD, Turvey MT. Maintenance tendency in co-ordinated rhythmic movements: relative fluctuations and phase. Neuroscience. 1988;27(1):289–300. https://doi.org/10.1016/0306-4522(88)90238-2.

    Article  PubMed  Google Scholar 

  81. Schmidt RC, Shaw BK, Turvey MT. Coupling dynamics in interlimb coordination. J Exp Psychol Hum Percept Perform. 1993;19(2):397–415. https://doi.org/10.1037/0096-1523.19.2.397.

    Article  PubMed  Google Scholar 

  82. Schmidt RC, Carello C, Turvey MT. Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform. 1990;16(2):227–47. https://doi.org/10.1037/0096-1523.16.2.227.

    Article  PubMed  Google Scholar 

  83. Schmidt RC, O’Brien B. Evaluating the dynamics of unintended interpersonal coordination. Ecol Psychol. 1997;9(3):189–206. https://doi.org/10.1207/s15326969eco0903_2.

    Article  Google Scholar 

  84. Schmidt RC, Turvey MT. Phase-entrainment dynamics of visually coupled rhythmic movements. Biol Cybern. 1994;70(4):369–76. https://doi.org/10.1007/BF00200334.

    Article  PubMed  Google Scholar 

  85. Schöner G, Haken H, Kelso JAS. A stochastic theory of phase transitions in human hand movement. Biol Cybern. 1986;53(4):247–57. https://doi.org/10.1007/BF00336995.

    Article  PubMed  Google Scholar 

  86. Cornejo C, Hurtado E, Cuadros Z, et al. Dynamics of simultaneous and imitative bodily coordinations in trust, distrust and closeness. Submitted.

    Google Scholar 

  87. Okazaki S, Hirotani M, Koike T, et al. Unintentional interpersonal synchronization represented as a reciprocal visuo-postural feedback system: a multivariate autoregressive modeling approach. PLoS One. 2015;10(9):e0137126. https://doi.org/10.1371/journal.pone.0137126.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Musa R, Carré D, Cornejo C. Bodily synchronization and ecological validity: a relevant concern for nonlinear dynamical systems theory. Front Hum Neurosci. 2015;9(64):64. https://doi.org/10.3389/fnhum.2015.00064.

    PubMed  PubMed Central  Google Scholar 

  89. Athreya DN, Riley MA, Davis TJ. Visual influences on postural and manual interpersonal coordination during a joint precision task. Exp Brain Res. 2014;232(9):2741–51. https://doi.org/10.1007/s00221-014-3957-2.

    Article  PubMed  Google Scholar 

  90. Oullier O, de Guzman GC, Jantzen KJ, Lagarde J, Kelso JAS. Social coordination dynamics: measuring human bonding. Soc Neurosci. 2008;3(2):178–92. https://doi.org/10.1080/17470910701563392.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Varlet M, Marin L, Lagarde J, Bardy BG. Social postural coordination. J Exp Psychol Hum Percept Perform. 2011;37(2):473–83. https://doi.org/10.1037/a0020552.

    Article  PubMed  Google Scholar 

  92. Roerdink M, Peper CE, Beek PJ. Effects of correct and transformed visual feedback on rhythmic visuo-motor tracking: tracking performance and visual search behavior. Hum Mov Sci. 2005;24(3):379–402. https://doi.org/10.1016/j.humov.2005.06.007.

    Article  PubMed  Google Scholar 

  93. Schmidt RC, Bienvenu M, P a F, Amazeen PG. A comparison of intra- and interpersonal interlimb coordination: coordination breakdowns and coupling strength. J Exp Psychol Hum Percept Perform. 1998;24(3):884–900. https://doi.org/10.1037/0096-1523.24.3.884.

    Article  PubMed  Google Scholar 

  94. Varlet M, Marin L, Capdevielle D, et al. Difficulty leading interpersonal coordination: towards an embodied signature of social anxiety disorder. Front Behav Neurosci. 2014;8:29. https://doi.org/10.3389/fnbeh.2014.00029.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rodrigues M, Passos P. Patterns of interpersonal coordination in rugby union: analysis of collective behaviours in a match situation. Sci Res. 2013;3(4):209–14. https://doi.org/10.4236/ape.2013.34034.

    Google Scholar 

  96. Valdesolo P, Ouyang J, DeSteno D. The rhythm of joint action: synchrony promotes cooperative ability. J Exp Soc Psychol. 2010;46(4):693–5. https://doi.org/10.1016/j.jesp.2010.03.004.

    Article  Google Scholar 

  97. De Jaegher H, Di Paolo E, Gallagher S. Can social interaction constitute social cognition? Trends Cogn Sci. 2010;14(10):441–7. https://doi.org/10.1016/j.tics.2010.06.009.

    Article  PubMed  Google Scholar 

  98. Kumfor F, et al. Clinical studies of social neuroscience: a lesion model approach. In: Ibáñez A, Sedeño L, García AM, editors. Neuroscience and social science. New York: Springer; 2017.

    Google Scholar 

  99. De Jaegher H. Social understanding through direct perception? Yes, by interacting. Conscious Cogn. 2009;18(2):535–42. https://doi.org/10.1016/j.concog.2008.10.007.

    Article  PubMed  Google Scholar 

  100. Schilbach L. A second-person approach to other minds. Nat Rev Neurosci. 2010;11(6):449. https://doi.org/10.1038/nrn2805-c1.

    Article  PubMed  Google Scholar 

  101. Babiloni F, Astolfi L. Social neuroscience and hyperscanning techniques: past, present and future. Neurosci Biobehav Rev. 2014;44:76–93. https://doi.org/10.1016/j.neubiorev.2012.07.006.

    Article  PubMed  Google Scholar 

  102. Toppi J, Borghini G, Petti M, et al. Investigating cooperative behavior in ecological settings: an EEG hyperscanning study. PLoS One. 2016;11(4):e0154236. https://doi.org/10.1371/journal.pone.0154236.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Levenson RW, Gottman JM. Physiological and affective predictors of change in relationship satisfaction. J Pers Soc Psychol. 1985;49(1):85–94. https://doi.org/10.1037/0022-3514.49.1.85.

    Article  PubMed  Google Scholar 

  104. Sebanz N, Knoblich G, Prinz W, Wascher E. Twin peaks: an ERP study of action planning and control in co-acting individuals. J Cogn Neurosci. 2006;18(5):859–70. https://doi.org/10.1162/jocn.2006.18.5.859.

    Article  PubMed  Google Scholar 

  105. Sebanz N, Knoblich G. Prediction in joint action: what, when, and where. Top Cogn Sci. 2009;1(2):353–67. https://doi.org/10.1111/j.1756-8765.2009.01024.x.

    Article  PubMed  Google Scholar 

  106. Knoblich G, Butterfill S, Sebanz N. Psychological research on joint action: theory and data. Psychol Learn Motiv Adv Res Theory. 2011;54:59–101.

    Article  Google Scholar 

  107. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Cogn Brain Res. 1996;3(2):131–41. https://doi.org/10.1016/0926-6410(95)00038-0.

    Article  Google Scholar 

  108. Rizzolatti G, Fogassi L, Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci. 2001;2:661–70. https://doi.org/10.1038/35090060.

    Article  PubMed  Google Scholar 

  109. Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: from action organization to intention understanding. Science. 2005;308:662–7. https://doi.org/10.1126/science.1106138.

    Article  PubMed  Google Scholar 

  110. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol. 2005;3(3):e79. https://doi.org/10.1371/journal.pbio.0030079.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kaplan JT, Iacoboni M. Getting a grip on other minds: mirror neurons, intention understanding, and cognitive empathy. Soc Neurosci. 2006;1(3–4):175–83. https://doi.org/10.1080/17470910600985605.

    Article  PubMed  Google Scholar 

  112. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27(1):169–92. https://doi.org/10.1146/annurev.neuro.27.070203.144230.

    Article  PubMed  Google Scholar 

  113. Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond Ser B Biol Sci. 2003;358(1431):593–602. https://doi.org/10.1098/rstb.2002.1238.

    Article  Google Scholar 

  114. Wilson M, Knoblich G. The case for motor involvement in perceiving conspecifics. Psychol Bull. 2005;131(3):460–73. https://doi.org/10.1037/0033-2909.131.3.460.

    Article  PubMed  Google Scholar 

  115. Freeman WJ. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern. 1987;56(2–3):139–50. https://doi.org/10.1007/BF00317988.

    Article  PubMed  Google Scholar 

  116. King-Casas B. Getting to know you: reputation and trust in a two-person economic exchange. Science. 2005;308(5718):78–83. https://doi.org/10.1126/science.1108062.

    Article  PubMed  Google Scholar 

  117. Zahavi D. Empathy, embodiment and interpersonal understanding: from Lipps to Schutz. Inquiry. 2010;53(3):285–306. https://doi.org/10.1080/00201741003784663.

    Article  Google Scholar 

  118. Gallagher S. Direct perception in the intersubjective context. Conscious Cogn. 2008;17(2):535–43. https://doi.org/10.1016/j.concog.2008.03.003.

    Article  PubMed  Google Scholar 

  119. Feldman R, Magori-Cohen R, Galili G, Singer M, Louzoun Y. Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behav Dev. 2011;34(4):569–77.

    Article  PubMed  Google Scholar 

  120. Burger B, Thompson MR, Luck G, Saarikallio SH, Toiviainen P. Hunting for the beat in the body: on period and phase locking in music-induced movement. Front Hum Neurosci. 2014;8:903. https://doi.org/10.3389/fnhum.2014.00903.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Toiviainen P, Alluri V, Brattico E, Wallentin M, Vuust P. Capturing the musical brain with Lasso: dynamic decoding of musical features from fMRI data. NeuroImage. 2014;88:170–80. https://doi.org/10.1016/j.neuroimage.2013.11.017.

    Article  PubMed  Google Scholar 

  122. Seifert L, Lardy J, Bourbousson J, et al. Interpersonal coordination and individual organization combined with shared phenomenological experience in rowing performance: two case studies. Front Psychol. 2017;8:75. https://doi.org/10.3389/fpsyg.2017.00075.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cornejo C. Intersubjectivity as co-phenomenology: From the holism of meaning to the being-in-the-world-with-others. Integr Psychol Behav Sci. 2008;42(2):171–8. https://doi.org/10.1007/s12124-007-9043-6.

    Article  PubMed  Google Scholar 

  124. Chartrand TL, Bargh JA. The chameleon effect: the perception-behavior link and social interaction. J Pers Soc Psychol. 1999;76(6):893–910. https://doi.org/10.1037/0022-3514.76.6.893.

    Article  PubMed  Google Scholar 

  125. Launay J, Dean RT, Bailes F. Synchronization can influence trust following virtual interaction. Exp Psychol. 2013;60(1):53–63. https://doi.org/10.1027/1618-3169/a000173.

    Article  PubMed  Google Scholar 

  126. Gallotti M, Frith CD. Social cognition in the we-mode. Trends Cogn Sci. 2013;17(4):160. https://doi.org/10.1016/j.tics.2013.02.002.

    Article  PubMed  Google Scholar 

  127. Schutz A. The phenomenology of the social world. Evanston: Northwestern University Press; 1967. 255 p

    Google Scholar 

  128. Davis T. The ties that bind: unintentional spontaneous synchrony in social interactions. In: Passos P, Davids K, Chow JY, editors. Interpersonal coordination and performance in social systems. New York: Routledge; 2016. p. 53–64.

    Google Scholar 

Download references

Acknowledgments

This chapter was supported by the Chilean National Fund for Scientific and Technological Development, FONDECYT (Grant number 1141136), and the Scientific and Technological Equipment Program, FONDEQUIP (Grant number EQM120026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cornejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cornejo, C., Cuadros, Z., Morales, R. (2017). Neurobiological Approaches to Interpersonal Coordination: Achievements and Pitfalls. In: Ibáñez, A., Sedeño, L., García, A. (eds) Neuroscience and Social Science. Springer, Cham. https://doi.org/10.1007/978-3-319-68421-5_4

Download citation

Publish with us

Policies and ethics