Skip to main content

Bioactive Coatings

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

From traditional approaches of employing bulk materials to the new generation of bioactive coated implants, the design of such medical tools is being directed towards the implementation bioactive compounds to allow the direct bonding of living tissues and osteoconduction. However, the development of an optimal bioactive implant for tissue regeneration has not been achieved. The research for novel materials is hindered by the biocompatibility and bioactivity of the compound as well as their mechanical properties. To improve the bioactivity of the implants, the increase of surface area of the implant as well as the use of resorbable compounds is being studied with promising results. Among all different materials and composite employed, the common materials include calcium phosphates and resorbable bioglasses inspired in natural scaffold composition of bones and teeth. In some cases, this material is being used as a coating and combined with further treatments and functional coatings which may reinforce its bioresponsive properties, and in some cases, it can provide additional properties such as antimicrobial activity. In addition, a specific class of bioactive coatings based on biodegradable polymers has also been developed. These coatings temporally aim at accelerating wound healing and forming new tissue at the material-tissue interface around implanted devices or protecting those implants against biomaterial-associated infections. Bioactive, degradable coatings can be generated both from natural and synthetic polymers. Common strategies, reviewed here, are based on natural polymers like proteins, polysaccharides, or glycosaminoglycanes to improve their bioactivity either by chemical functionalization of the biopolymer itself (e.g. introduction of bioactive groups) or by immobilization of bioactive components (e.g. cell adhesion peptides). Degradable or at least water-soluble synthetic polymers as polylactones or polyethylene glycols have been used for long time to create carrier materials for bioactive agents. As exemplary illustrated, those polymers are also used creating either substrate-adhering nanofilms or hydrogel-based thick coatings with high bioactivity to stimulate cell adhesion or avoid microbial adhesion. This chapter aims to summarize all recent approaches in the development of various bioactive coating materials, as well as the coating techniques and further treatment, functionalization and surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidian MR, Corey JM, Kipke DR, Martin DC (2010) Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6:421–429

    Article  Google Scholar 

  • Abidian MR, Kim D-H, Martin DC (2006) Conducting-polymer nanotubes for controlled drug release. Adv Mater 18:405

    Article  Google Scholar 

  • Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellicci PM, Bullough PG (1988) Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Jt Surg 170:347–356

    Article  Google Scholar 

  • Andrianov AK, DeCollibus DP, Gillis HA, Henry HK, Marin A, Prausnitz MR, Babiuk LA, Townsend H, Mutwiri G (2009) Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci 106:18936–18941

    Article  Google Scholar 

  • Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Progr Polym Sci 39:1644–1667

    Article  Google Scholar 

  • Antti-Poika I, Josefsson G, Konttinen Y, Lidgren L, Santavirta S, Sanzén L (1990) Hip arthroplasty infection: current concepts. Acta Orthop 61:163–169

    Article  Google Scholar 

  • Arifin A, Sulong AB, Muhamad N, Syarif J, Ramli MI (2014) Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater Des 55:165–175. doi:10.1016/j.matdes.2013.09.045

    Article  Google Scholar 

  • Arora S, Yadav V, Kumar P, Gupta R, Kumar D (2013) Polymer based antimicrobial coatings as potential biomaterial: a review. Int J Pharm Sci Rev Res 23:279–290

    Google Scholar 

  • Assis de CM, Vercik de LCO, Santos dos ML, Fook MVL, Guastaldi AC (2005) Comparison of crystallinity between natural hydroxyapatite and synthetic cp-Ti/HA coatings. Mater Res 8:207–211

    Google Scholar 

  • ASTM (2014) ASTM F1609. Standard Specification for Calcium Phosphate Coatings for Implantable Materials

    Google Scholar 

  • Auclair-Daigle C, Bureau MN, Legoux J, Yahia L (2005a) Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res, Part A 73:398–408

    Article  Google Scholar 

  • Auclair-Daigle C, Bureau MN, Legoux JG, Yahia L (2005b) Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res—Part A 73:398–408. doi:10.1002/jbm.a.30284

    Article  Google Scholar 

  • Auernheimer J, Zukowski D, Dahmen C, Kantlehner M, Enderle A, Goodman SL, Kessler H (2005) Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Chem BioChem 6:2034–2040

    Google Scholar 

  • Aumailley M, Gurrath M, Mueller G, Calvete J, Timpl R, Kessler H (1991) Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291:50–54

    Article  Google Scholar 

  • Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030

    Article  Google Scholar 

  • Bai Y, Park IS, Lee SJ, Bae TS, Duncan W, Swain M, Lee MH (2011) One-step approach for hydroxyapatite-incorporated TiO2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition. Appl Surf Sci 257:7010–7018

    Article  Google Scholar 

  • Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60:3752–3757

    Article  Google Scholar 

  • Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    Article  Google Scholar 

  • Berndt CC, Haddadt GN, Farmer AJD, Gross KA (1990) Thermal spraying for bloceramlc applications. Mater Forum 161–173

    Google Scholar 

  • Bierbaum S, Beutner R, Hanke T, Scharnweber D, Hempel U, Worch H (2003) Modification of Ti-6Al-4V surfaces using collagen I, III, and fibronectin. I. Biochemical and morphological characteristics of the adsorbed matrix. J Biomed Mater Res 67A:421–430

    Article  Google Scholar 

  • Bierbaum S, Douglas T, Hanke T, Scharnweber D, Tippelt S, Monsees TK, Funk RH, Worch H (2006) Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells. J Biomed Mater Res 77A:551–562

    Article  Google Scholar 

  • Bierbaum S, Hintze V, Scharnweber (2012) Functionalization of Biomaterials surfaces using artificial extracellular matrizes. Biomatter 2(3):1–10

    Google Scholar 

  • Bigi A, Boanini E, Panzavolta S, Roveri N, Rubini K (2002) Bonelike apatite growth on hydroxyapatite–gelatin sponges from simulated body fluid. J Biomed Mater Res 59:709–715

    Article  Google Scholar 

  • Birk DE (2001) Type V collagen: heterotypic type I/V collagen interaction in the regulation of fibril assembly. Micron 32:223–237

    Article  Google Scholar 

  • Bougas K, Stenport VF, Currie F, Wennerberg A (2012) Laminin coating promotes calcium phosphate precipitation on titanium discs in vitro. J Oral Maxillofac Res 2:e5. doi:10.5037/jomr.2011.2405

    Google Scholar 

  • Blind O, Klein LH, Dailey B, Jordan L (2005) Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4V substrates. Dent Mater 21:1017–1024

    Article  Google Scholar 

  • Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res 150:263–270

    Google Scholar 

  • Boccaccini AR, Chicatun F, Cho J, Bretcanu O, Roether JA, Novak S, Chen Q (2007) Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv Funct Mater 17:2815–2822. doi:10.1002/adfm.200600887

  • Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010a) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776

    Article  Google Scholar 

  • Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010b) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776. doi:10.1016/j.compscitech.2010.06.002

    Article  Google Scholar 

  • Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials 2:185–186

    Article  Google Scholar 

  • Bosco R, Iafisco M, Tampieri A, Jansen JA, Leeuwenburgh SCG, van den Beucken JJJP (2015) Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Appl Surf Sci 328:516–524

    Article  Google Scholar 

  • Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    Article  Google Scholar 

  • Bridges AW, García AJ (2008) Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol 2:984–994

    Article  Google Scholar 

  • Brooks BD (2013) Comparisons of release of several antibiotics from antimicrobial polymer-coated allograft bone void filler. Int J Biomed Mater Res 1:21. doi:10.11648/j.ijbmr.20130102.11

    Article  Google Scholar 

  • Bumgardner JD, Wiser R, Gerard PD, Bergin P, Chestnutt B, Marin M, Ramsey V, Elder SH, Gilbert JA (2003) Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. J Biomater Sci Polym Ed 14:423–438. doi:10.1163/156856203766652048

  • Bumgardner JD, Chesnutt BM, Yuan Y, Yang Y, Appleford M, Oh S, McLaughlin R, Elder SH, Ong JL (2007) The integration of chitosan-coated titanium in bone: an in vivo study in rabbits. Implant Dent 16:66–79

    Article  Google Scholar 

  • Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22:493–507. doi:10.1016/0272-8842(95)00126-3

    Article  Google Scholar 

  • Cao H, Xu SY (2008) EDC/NHS-crosslinked type II collagen-chondroitin sulfate scaffold: characterization and in vitro evaluation. J Mater Sci Mater Med 19:567–575

    Article  Google Scholar 

  • Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD (2005) Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Biomaterials 26:5960–5971

    Article  Google Scholar 

  • Cen L, Neoh KG, Kang ET (2004) Antibacterial activity of cloth functionalized with N-alkylated poly(4-vinylpyridine). J Biomed Mater Res, Part A 71:70–80

    Article  Google Scholar 

  • Chai CS, Ben-Nissan B (1999) Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J Mater Sci Mater Med 10:465–469. doi:10.1023/A:1008992807888

    Article  Google Scholar 

  • Chen AF (2005) Nitric oxide: a newly discovered function on wound healing. Acta Pharmacol Sin 26:259–264

    Article  Google Scholar 

  • Chen QZ, Blaker JJ, Boccaccini AR (2006) Bioactive and mechanically strong Bioglass®-poly(D, L-lactic acid) composite coatings on surgical sutures. J Biomed Mater Res Part B Appl Biomater 76:354–363

    Article  Google Scholar 

  • Chen Q-Z, Li Y, Jin L-Y, Quinn JMW, Komesaroff PA (2010) A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater 6:4143–4153

    Article  Google Scholar 

  • Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloids Surf A Physicochem Eng Asp 328:73–78

    Article  Google Scholar 

  • Choi J, Kong Y, Kim H, Lee I (1998) Reinforcement of hydroxyapatite bioceramic by addition of Ni3Al and Al2O3. J Am Ceram Soc 81:1743–1748

    Article  Google Scholar 

  • Choy K (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48:57–170. doi:10.1016/S0079-6425(01)00009-3

    Article  Google Scholar 

  • Cordero-Arias L, Cabanas-Polo S, Gilabert J, Goudouri OM, Sanchez E, Virtanen S, Boccaccini AR (2014) Electrophoretic deposition of nanostructured TiO2/alginate and TiO2—bioactive glass/alginate composite coatings on stainless steel. Adv Appl Ceram 113:42–49. doi:10.1179/1743676113Y.0000000096

  • Cordero-arias L, Cabanas-polo S, Goudouri OM, Misra SK, Gilabert J, Valsami-jones E, Sanchez E (2015) Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications. Mater Sci Eng, C 55:137–144. doi:10.1016/j.msec.2015.05.034

    Article  Google Scholar 

  • Corpe RS, Young TR, Steflik DE, Whitehead RY, Wilson MD, Jaramillo C (2000) Correlative experimental animal and human clinical retrieval evaluations of hydroxyapatite (HA)-coated and non-coated implants in orthopaedics and dentistry

    Google Scholar 

  • Cornelissen CG, Dietrich M, Gromann K, Frese J, Krueger S, Sachweh JS, Jockenhoevel S (2013) Fibronectin coating of oxygenator membranes enhances endothelial cell attachment. Biomed Eng Online 12:7. doi:10.1186/1475-925x-12-7v

    Article  Google Scholar 

  • Cui C, Liu H, Li Y, Sun J, Wang R, Liu S, Greer AL (2005) Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Mater Lett 59:3144–3148

    Article  Google Scholar 

  • Cui FZ, Luo ZS (1999) Biomaterials modification by ion-beam processing. Surf Coatings Technol 112:278–285

    Article  Google Scholar 

  • Dalsin JL, Lijun Lin L, Tosatti S, Janos Vörös J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 21:640–646

    Article  Google Scholar 

  • Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Progr Polym Sci 36:981–1014

    Article  Google Scholar 

  • De Groot K, Geesink R, Klein C, Serekian P (1987) Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 21:1375–1381

    Article  Google Scholar 

  • De Jong WF (1926) La substance minerale dans les os. Recl des Trav Chim des Pays-Bas 45:445–448

    Article  Google Scholar 

  • Dubs M, Weisser J, Linke R, Pfuch A, Imhof D, Schnabelrauch M (2009) Dextran-based coating system for the immobilization of cell adhesion promoting molecules on titanium surfaces. Mat-wiss Werkstofftech 40:853–860

    Article  Google Scholar 

  • Ducheyne P (1985) Bioglass coatings and bioglass composites as implant materials. J Biomed Mater Res 19:273–291

    Article  Google Scholar 

  • Ducheyne P, Radin S, Heughebaert M, Heughebaert JC (1990) Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution. Biomaterials 11:244–254

    Article  Google Scholar 

  • Dumbleton J, Manley MT (2004) Hydroxyapatite-coated prostheses in total hip and knee arthroplasty. J Bone Jt Surg 86:2526–2540

    Article  Google Scholar 

  • Elmengaard B, Bechtold JE, Søballe K (2005) In vivo effects of RGD-coated titanium implants inserted in two bone-gap models. J Biomed Mater Res 75A:249–255

    Article  Google Scholar 

  • Engler AC, Tan JPK, Ong ZY, Coady DJ, Ng VWL, Yang YY, Hedrick JL (2013) Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromol 14:4331–4339

    Article  Google Scholar 

  • Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 5:22

    Article  Google Scholar 

  • Fathi MH, Doostmohammadi A (2009a) Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J Mater Process Technol 209:1385–1391. doi:10.1016/j.jmatprotec.2008.03.051

  • Fathi MH, Doostmohammadi A (2009b) Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J Mater Process Technol 209:1385–1391

    Article  Google Scholar 

  • Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, Ohl A, Nebe BJ (2007) The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 28:4521–4534

    Article  Google Scholar 

  • Fölsch C, Federmann M, Kuehn KD, Kittinger C, Kogler S, Zarfel G, Kerwat M, Braun S, Fuchs-Winkelmann S, Paletta JRJ (2015) Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model. Int Orthop 39:981–988

    Article  Google Scholar 

  • Gallardo J, Galliano P, Duran A (2001) Bioactive and protective sol-gel coatings on metals for orthopaedic prostheses. J Sol-Gel Sci Technol 21:65–74

    Article  Google Scholar 

  • Galliano P, De Damborenea JJ, Pascual MJ, Duran A (1998) Sol-gel coatings on 316L steel for clinical applications. J Sol–Gel Sci Technol 13:723–727

    Article  Google Scholar 

  • Gallo J, Holinka M, Moucha CS (2014) Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 15:13849–13880

    Article  Google Scholar 

  • Garcia C, Cere S, Duran A (2004) Bioactive coatings prepared by sol–gel on stainless steel 316L. J Non Cryst Solids 348:218–224

    Article  Google Scholar 

  • Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  Google Scholar 

  • Garric X, Molès J, Garreau H, Guilhou J, Vert M (2005) Human skin cell cultures onto PLA50 (PDLLA) bioresorbable polymers: influence of chemical and morphological surface modifications. J Biomed Mater Res, Part A 72:180–189

    Article  Google Scholar 

  • Gawalt ES, Avaltroni MJ, Danahy MP, Silverman BM, Hanson EL, Midwood KS, Schwarzbauer JE, Schwartz J (2003) Bonding organics to Ti alloys: facilitating human osteoblast attachment and spreading on surgical implant materials. Langmuir 19:200–204

    Google Scholar 

  • Geesink RGT, de Groot K, Klein CPAT (1987) Chemical implant fixation using hydroxyl-apatite coatings: the development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates. Clin Orthop Relat Res 225:147–170

    Google Scholar 

  • Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci 54:397–425

    Article  Google Scholar 

  • Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K (2000) Collagen type I-coating of Ti-6Al-4V promotes adhesion of osteoblasts. J Biomed Mater Res 51:752–760

    Article  Google Scholar 

  • Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32:3395–3403

    Article  Google Scholar 

  • Gnauck M, Jaehne E, Blaettler T, Tosatti S, Textor M, Adler H-PJ (2007) Carboxy-terminated oligo(ethylene glycol)-alkane phosphate: Synthesis and self-assembly on titanium oxide surfaces. Langmuir 23:377–381

    Article  Google Scholar 

  • Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ (2000) Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. Process Biomater 21:105–111. doi:10.1016/S0142-9612(99)00131-3

  • Gopi D, Shinyjoy E, Sekar M, Surendiran M, Kavitha L, Sampath Kumar TS (2013) Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method. Corros Sci 73:321–330. doi:10.1016/j.corsci.2013.04.021

    Article  Google Scholar 

  • Gorustovich AA, Roether JA, Boccaccini AR (2009) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207

    Article  Google Scholar 

  • Gross U, Strunz V (1985) The interface of various glasses and glass ceramics with a bony implantation bed. J Biomed Mater Res 19:251–271

    Article  Google Scholar 

  • Habibovic P, Barrere F, Blitterswijk CA, Groot K, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 85:517–522

    Article  Google Scholar 

  • Hamdi M, Ide-Ektessabi A (2003) Preparation of hydroxyapatite layer by ion beam assisted simultaneous vapor deposition. Surf coatings Technol 163:362–367

    Article  Google Scholar 

  • Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  Google Scholar 

  • Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  • Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728. doi:10.1111/j.1151-2916.1998.tb02540.x

    Article  Google Scholar 

  • Hench LL, Clark AE (1982) Adhesion to bone. Biocompat Orthop Implant 2:129–170

    Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science (80–) 295:1014–1017

    Google Scholar 

  • Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141

    Article  Google Scholar 

  • Hench LL, Wilson J (1993) An introduction to bioceramics. World Scientific

    Google Scholar 

  • Hendriks JGE, Van Horn JR, Van Der Mei HC, Busscher HJ (2004) Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 25:545–556

    Article  Google Scholar 

  • Hintze V, Moeller S, Schnabelrauch M, Bierbaum S, Viola M, Worch H, Scharnweber D (2009) Modification of hyaluronan influence the interaction with human bone morphogenetic protein-4(hBMP-4). Biomacromolecules 10:3290–3297

    Article  Google Scholar 

  • Hintze V, Miron A, Moeller S, Schnabelrauch M, Wiesmann H-P, Worch H, Scharnweber D (2012) Sulfated hyaluronan and chondroitin sulfate interact differently with human transforming growth factor-β1 (TGF-β1). Acta Biomater 8:2144–2152

    Article  Google Scholar 

  • Hintze V, Samsonov SA, Anselmi M, Moeller S, Becher J, Schnabelrauch M, Scharnweber D, Pisabarro MT (2014) Sulfated glycosaminoglycans exploit the conformational plasticity of bone morphogenetic protein-2 (BMP-2) and alter the interaction profile with its receptor. Biomacromol 15:3083–3092

    Article  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  Google Scholar 

  • Hoppe A, Sarker B, Detsch R, Hild N, Mohn D, Stark WJ, Boccaccini AR (2014) In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles. J Non Cryst Solids 387:41–46

    Article  Google Scholar 

  • Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455. doi:10.1016/j.actbio.2012.04.012

  • Hou X, Choy K, Leach SE (2007) Processing and in vitro behavior of hydroxyapatite coatings prepared by electrostatic spray assisted vapor deposition method. J Biomed Mater Res, Part A 83:683–691

    Article  Google Scholar 

  • Hou X, Choy K-L, Yan J (2008) Deposition of biodegradable poly(d, l-lactic acid) films using aerosol-assisted method. Surf Coatings Technol 202:5175–5179

    Article  Google Scholar 

  • Hsiung J, Kung H, Chen H, Chang KY (2012) Applications of thermal spray coating in artificial knee joints

    Google Scholar 

  • Huiskes R, Weinans H, Van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134

    Google Scholar 

  • Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge university press

    Google Scholar 

  • Ignatius A, Peraus M, Schorlemmer S, Augat P, Burger W, Leyen S, Claes L (2005) Osseointegration of alumina with a bioactive coating under load-bearing and unloaded conditions. Biomaterials 26:2325–2332. doi:10.1016/j.biomaterials.2004.07.029

    Article  Google Scholar 

  • ISO (2000) ISO 13779–2. Implants for surgery—hydroxyapatite—part 2: Coatings of hydroxyapatite

    Google Scholar 

  • Jaiswal S, McHale P, Duffy B (2012) Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol–gel surfaces. Colloids Surfaces B Biointerfaces 94:170–176

    Article  Google Scholar 

  • Jones DA (1996) Principles and prevention of corrosion. Prentice Hall

    Google Scholar 

  • Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  Google Scholar 

  • Joshi A, Solanki S, Chaudhari R, Bahadur D, Aslam M, Srivastava R (2011) Multifunctional alginate microspheres for biosensing, drug delivery and magnetic resonance imaging. Acta Biomater 7:3955–3963

    Article  Google Scholar 

  • Jun SH, Lee EJ, Yook SW, Kim HE, Kim HW, Koh YH (2010a) A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol–gel process. Acta Biomater 6:302–307. doi:10.1016/j.actbio.2009.06.024

    Article  Google Scholar 

  • Jun S-H, Lee E-J, Yook S-W, Kim H-E, Kim H-W, Koh Y-H (2010b) A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol–gel process. Acta Biomater 6:302–307

    Article  Google Scholar 

  • Kamitakahara M, Ohtsuki C, Miyazaki T (2007) Coating of bone-like apatite for development of bioactive materials for bone reconstruction. Biomed Mater 2:R17–R23. doi:10.1088/1748-6041/2/4/R01

    Article  Google Scholar 

  • Katz BZ, Zamir E, Bershadsky A, Kam Z, Yamada KM, Geiger B (2000) Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell 11:1047–1060

    Article  Google Scholar 

  • Kasuga T, Nogami M, Niinomi M (2003) Calcium Phosphate Glass-Ceramics for Bioactive Coating on a β-Titanium Alloy. Adv Eng Mater 5:498–501

    Article  Google Scholar 

  • Kawai T, Ohtsuki C, Kamitakahara M, Tanihara M, Miyazaki T, Sakaguchi Y, Konagaya S (2006) Removal of formaldehyde by hydroxyapatite layer biomimetically deposited on polyamide film. Environ Sci Technol 40:4281–4285

    Article  Google Scholar 

  • Kim J, Won J, Shin US, Kim H (2011) Improvement of bioactive glass nanofiber by a capillary-driven infiltration coating with degradable polymers. J Am Ceram Soc 94:2812–2815

    Article  Google Scholar 

  • Kim JO, Noh J-K, Thapa RK, Hasan N, Choi M, Kim JH, Lee J-H, Ku SK, Yoo J-W (2015) Nitric oxide-releasing chitosan film for enhanced antibacterial and in vivo wound-healing efficacy. Int J Biol Macromol 79:217–225

    Article  Google Scholar 

  • Kim SW, Jacobs H (1996) Design of nonthrombogenic polymer surfaces for blood-contacting medical devices. Blood Purif 14:357–372

    Article  Google Scholar 

  • Kittinger C, Marth E, Windhager R, Weinberg AM, Zarfel G, Baumert R, Felisch S, Kuehn K-D (2011) Antimicrobial activity of gentamicin palmitate against high concentrations of Staphylococcus aureus. J Mater Sci Mater Med 22:1447–1453

    Article  Google Scholar 

  • Klein CPAT, Patka PV, Van der Lubbe HBM, Wolke JGC, De Groot K (1991) Plasma-sprayed coatings of tetracalciumphosphate, hydroxyl-apatite, and α-TCP on titanium alloy: an interface study. J Biomed Mater Res 25:53–65

    Article  Google Scholar 

  • Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel) 3:340–366

    Article  Google Scholar 

  • Kodama T, Goto T, Miyazaki T, Takahashi T (2008) Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin. Int J Oral Maxillofac Implants 23:1013–1019

    Google Scholar 

  • Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175. doi:10.1016/S0142-9612(03)00044-9

    Article  Google Scholar 

  • Konradi R, Pidhatika B, Mühlebach A, Textor M (2008) Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24:613–616

    Article  Google Scholar 

  • Korn P, Schulz MC, Hintze V, Range U, Mai R, Eckelt U, Schnabelrauch M, Moeller S, Becher J, Scharnweber D, Stadlinger B (2014) Chondroitin sulfate and sulfated hyaluronan-containing coatings of titanium implants influence peri-implant bone formation in a minipig model. J Biomed Mater Res 102A:2334–2344

    Google Scholar 

  • Kummer FJ, Jaffe WL (1992) Stability of a cyclically loaded hydroxyapatite coating: effect of substrate material, surface preparation, and testing environment. J Appl Biomater 3:211–215

    Article  Google Scholar 

  • Latour RA (2005) Biomaterials: protein-surface interactions. Encycl Biomater Biomed Eng 28:1–15

    Google Scholar 

  • Lebaron RG, Athanasiou KA (2000) Extracellular matrix cell adhesion peptides: functional application in orthopaedic materials. Tissue Eng 6:85–103

    Article  Google Scholar 

  • Learmonth ID (2012) Interfaces in total hip arthroplasty. Springer Science and Business Media

    Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  Google Scholar 

  • Leonor IB, Azevedo HS, Alves CM, Reis RL (2002) Effecs of the incorporation of proteins and active enzymes on biomimetic calcium-phosphate coatings. In: Key engineering materials. Transaction Technology of Publication, pp 97–100

    Google Scholar 

  • Li Z, Yang F, Yang R (2015) Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int J Biol Macromol 75:378–387

    Article  Google Scholar 

  • Liao J, Zhu Y, Yin Z, Tan G, Ning C, Mao C (2014) Tuning nano-architectures and improving bioactivity of conducting polypyrrole coating on bone implants by incorporating bone-borne small molecules. J Mater Chem B 2:7872–7876. doi:10.1039/C4TB01053A

    Article  Google Scholar 

  • Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586

    Article  Google Scholar 

  • Liu B, Lin P, Shen Y, Dong Y (2008) Porous bioceramics reinforced by coating gelatine. J Mater Sci Mater Med 19:1203–1207

    Article  Google Scholar 

  • Liu D-M, Yang Q, Troczynski T (2002) Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23:691–698. doi:10.1016/S0142-9612(01)00157-0

    Article  Google Scholar 

  • Liu J, Miao X (2004) Sol–gel derived bioglass as a coating material for porous alumina scaffolds. Ceram Int 30:1781–1785. doi:10.1016/j.ceramint.2003.12.120

    Article  Google Scholar 

  • Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Reports 47:49–121. doi:10.1016/j.mser.2004.11.001

    Article  Google Scholar 

  • Lo WJ, Grant DM, Ball MD, Welsh BS, Howdle SM, Antonov EN, Bagratashvili VN, Popov VK (2000) Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy. J Biomed Mater Res 50:536–545

    Article  Google Scholar 

  • Lopez-Sastre A, Gonzalo-Orden JM, Altónaga JAR, Altónaga JR, Orden MA (1998a) Coating titanium implants with bioglass and with hydroxyapatite. Int Orthop 22:380–383

    Article  Google Scholar 

  • Lopez-Sastre S, Gonzalo-Orden JM, Altónaga JA, Altónaga JR, Orden MA (1998b) Coating titanium implants with bioglass and with hydroxyapatite. A comparative study in sheep. Int Orthop 22:380–383

    Google Scholar 

  • Magyari K, Baia L, Vulpoi A, Simon S, Popescu O, Simon V (2015) Bioactivity evolution of the surface functionalized bioactive glasses. J Biomed Mater Res Part B Appl Biomater 103:261–272

    Article  Google Scholar 

  • Malafaya PB, Silva GA, Reis RL (2005) Strategies for delivering bone and cartilage regenerating factors. In: Reis RL, San Roman J (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Baton Rouge, pp 253–280

    Google Scholar 

  • Man HC, Chiu KY, Cheng FT, Wong KH (2009) Adhesion study of pulsed laser deposited hydroxyapatite coating on laser surface nitrided titanium. Thin Solid Films 517:5496–5501

    Article  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press

    Google Scholar 

  • Marois Y, Chakfe N, Deng X, Marois M, How T, King MW, Guidoin R (1995) Carbodiimide cross-linked gelatin: a new coating for porous polyester arterial prostheses. Biomaterials 16:1131–1139

    Article  Google Scholar 

  • Másson M, Holappa J, Hjálmarsdóttir M, Rúnarsson ÖV, Nevalainen T, Järvinen T (2008) Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr Polym 74:566–571

    Article  Google Scholar 

  • McMillan DJ, Lutton C, Rosenzweig N, Sriprakash KS, Goss B, Stemberger M, Schuetz MA, Steck R (2011) Prevention of Staphylococcus aureus biofilm formation on metallic surgical implants via controlled release of gentamicin. J Biomed Sci Eng 4:535

    Article  Google Scholar 

  • Mehdipour M, Afshar A (2012) A study of the electrophoretic deposition of bioactive glass-chitosan composite coating. Ceram Int 38:471–476. doi:10.1016/j.ceramint.2011.07.029

    Article  Google Scholar 

  • Meyers SR, Grinstaff MW (2011) Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev 112:1615–1632

    Article  Google Scholar 

  • Meyers SR, Grinstaff MW (2012) Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev 112:1615–1632. doi:10.1021/cr2000916

    Article  Google Scholar 

  • Mohseni E, Zalnezhad E, Bushroa AR (2014a) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: a review paper. Int J Adhes Adhes 48:238–257. doi:10.1016/j.ijadhadh.2013.09.030

  • Mohseni E, Zalnezhad E, Bushroa AR (2014b) Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: a review paper. Int J Adhes Adhes 48:238–257

    Article  Google Scholar 

  • Morra M, Cassinelli C, Cascardo G, Cahalan P, Cahalan L, Fini M, Giardino R (2003) Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials 24:4639–4654

    Article  Google Scholar 

  • Morra M, Cassinelli C, Cascardo G, Bollati D (2009) Collagen I-coated titanium surfaces for bone implantation. In: Puleo DA, Bizios R (eds) Biological interactions on material surfaces. Springer, Dordrecht, pp 373–396

    Chapter  Google Scholar 

  • Moskalewicz T, Seuss S, Boccaccini AR (2013) Microstructure and properties of composite polyetheretherketone/Bioglass® coatings deposited on Ti-6Al-7Nb alloy for medical applications. Appl Surf Sci 273:62–67. doi:10.1016/j.apsusc.2013.01.174

    Article  Google Scholar 

  • Nablo BJ, Rothrock AR, Schoenfisch MH (2005) Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomaterials 26:917–924

    Article  Google Scholar 

  • Nasser S (1992) Prevention and treatment of sepsis in total hip replacement surgery. Orthop Clin North Am 23:265–277

    Google Scholar 

  • Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158

    Article  Google Scholar 

  • Ng VWL, Chan JMW, Sardon H, Ono RJ, García JM, Yang YY, Hedrick JL (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62

    Article  Google Scholar 

  • Nederberg F, Bowden T, Nilsson B, Hong J, Hilborn J (2004) Phosphoryl choline introduces dual activity in biomimetic ionomers. J Am Chem 126:15350–15351

    Article  Google Scholar 

  • Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang YY (2011) Biodegradable nanostructures with selective lysis of microbial membranes. Nature Chem 3:409–414

    Article  Google Scholar 

  • Nie X, Leyland A, Matthews A (2000) Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coatings Technol 125:407–414

    Article  Google Scholar 

  • Ohtsu N, Sato K, Saito K, Hanawa T, Asami K (2004) Evaluation of degradability of CaTiO3 thin films in simulated body fluids. Mater Trans 45:1778–1781

    Article  Google Scholar 

  • Ohtsu N, Sato K, Yanagawa A, Saito K, Imai Y, Kohgo T, Yokoyama A, Asami K, Hanawa T (2007) CaTiO3 coating on titanium for biomaterial application—optimum thickness and tissue response. J Biomed Mater Res, Part A 82:304–315

    Article  Google Scholar 

  • Olbrich KC, Andersen TT, Blumenstock FA, Bizios R (1996) Surfaces modified with covalently-immobilized adhesive peptides affect fibroblast population motility. Biomaterials 8:759–764

    Article  Google Scholar 

  • Ong JL, Appleford M, Oh S, Yang Y, Chen W-H, Bumgardner JD, Haggard WO (2006) The characterization and development of bioactive hydroxyapatite coatings. JOM 58:67–69

    Article  Google Scholar 

  • Ong JL, Lucas LC, Lacefield WR, Rigney ED (1992) Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials 13:249–254

    Article  Google Scholar 

  • Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT, Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560

    Google Scholar 

  • Oyane A, Uchida M, Ito A (2005) Laminin-apatite composite coating to enhance cell adhesion to ethylene-vinyl alcohol copolymer. J Med Mater Res A 72:168–174. 2012. Biomaterials 33(30):7386–7393. doi:10.1016/j.biomaterials.2012.06.066

  • Park E, Condrate RA (1999) Graded coating of hydroxyapatite and titanium by atmospheric plasma spraying. Mater Lett 40:228–234

    Article  Google Scholar 

  • Park J, Lakes RS (2007) Biomaterials: an introduction. Springer Science and Business Media

    Google Scholar 

  • Park JH, Schwartz Z, Olivares-Navarrete R, Boyan BD, Tannenbaum R (2011) Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes. Langmuir 27:5976–5985

    Article  Google Scholar 

  • Pazo A, Saiz E, Tomsia AP (1998) Silicate glass coatings on Ti-based implants. Acta Mater 46:2551–2558

    Article  Google Scholar 

  • Peddi L, Brow RK, Brown RF (2008) Bioactive borate glass coatings for titanium alloys. J Mater Sci Mater Med 19:3145–3152

    Article  Google Scholar 

  • Pishbin F, Mouriño V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 6:8796–8806. doi:10.1021/am5014166

    Article  Google Scholar 

  • Pishbin F, Mouriño V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9:7469–7479. doi:10.1016/j.actbio.2013.03.006

  • Porte-Durrieu MC, Guillemot F, Pallu S, Labrugere C, Brouillaud B, Bareille R, Amedee J, Barthe N, Dard M, Baquey (2004) Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 25:4837–4846

    Google Scholar 

  • Radin S, El-Bassyouni G, Vresilovic EJ, Schepers E, Ducheyne P (2005) In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials 26:1043–1052

    Article  Google Scholar 

  • Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD (2010) Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials 31:4909–4917

    Article  Google Scholar 

  • Rawlings RD (1993) Bioactive glasses and glass-ceramics. Clin Mater 14:155–179

    Google Scholar 

  • Reyes CD, Petrie TA, Burns KL, Schwartz Z, Garcia AJ (2007) Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 28:3228–3235

    Article  Google Scholar 

  • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  Google Scholar 

  • Riedel NA (2010) Sputter deposited hydroxyapatite thin films to enhance osseointegration

    Google Scholar 

  • Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173

    Article  Google Scholar 

  • Roop Kumar R, Wang M (2002) Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater Lett 55:133–137. doi:10.1016/S0167-577X(01)00635-8

    Article  Google Scholar 

  • Ruoslahti E, Engvall E (1980) Complexing of fibronectin glycosaminoglycans and collagen. Biochim Biophys Acta 631:350–358

    Article  Google Scholar 

  • Sahariah P, Benediktssdottir BE, Hjalmarsdottir MA, Sigurjonsson OE, Sørensen KK, Thygesen MB, Jensen KJ, Masson M (2015) Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and N, N-dialkyl chitosan derivatives. Biomacromol 16:1449–1460

    Article  Google Scholar 

  • Saino E, Maliardi V, Quartarone E, Fassina L, Benedetti L, De Angelis MGC, Mustarelli P, Facchini A, Visai L (2009) In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds. Tissue Eng Part A 16:995–1008

    Article  Google Scholar 

  • Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE (2004) Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. J Biomed Biotechnol 2004:24–34

    Article  Google Scholar 

  • Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S (2005) Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater 73:88–96

    Article  Google Scholar 

  • Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37:S105–S112

    Article  Google Scholar 

  • Schmidmaier G, Wildemann B, Stemberger A, Haas NP, Raschke M (2001) Biodegradable poly(D, L-lactide) coating of implants for continuous release of growth factors. J Biomed Mater Res 58:449–455

    Article  Google Scholar 

  • Schnabelrauch M, Wyrwa R, Rebl H, Bergemann C, Finke B, Schlosser M, Walschus U, Lucke S, Weltmann K-D, Nebe JB (2014) Surface-coated polylactide fiber meshes as tissue engineering matrices with enhanced cell integration properties. Int J Polym Sci, article ID 439784

    Google Scholar 

  • Sepulveda P, Jones JR, Hench LL (2002) Bioactive sol-gel foams for tissue repair. J Biomed Mater Res 59:340–348

    Article  Google Scholar 

  • Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Controlled Rel 152:168–176

    Article  Google Scholar 

  • Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine nanotechnology. Biol Med 7:22–39. doi:10.1016/j.nano.2010.10.005

  • Smith JR, Lamprou DA (2014) Polymer coatings for biomedical applications: a review. Trans IMF 92:9–19

    Article  Google Scholar 

  • Shannon FJ, Cottrell JM, Deng X-H, Crowder KN, Doty SB, Avaltroni MJ, Warren RF, Wright TM, Schwartz J (2008) A novel surface treatment for porous metallic implants that improves the rate of bony ongrowth. J Biomed Mater Res 86A:857–864

    Article  Google Scholar 

  • Shelke NB, James R, Cato T. Laurencin CT, Kumbar SG (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 25:448–460

    Google Scholar 

  • Soares GA, de Sena LÁ, Rossi AM, Pinto M, Muller CA, de Almeida Soares GD (2004) Effect of electrophoretic apatite coating on osseointegration of titanium dental implants. In: Key engineering materials. Transaction Technology of Publication, pp 729–732

    Google Scholar 

  • Solgi S, Khakbiz M, Shahrezaee M, Zamanian A, Tahriri M, Keshtkari S, Raz M, Khoshroo K, Moghadas S, Rajabnejad A (2015) Synthesis, characterization and in vitro biological evaluation of sol–gel derived Sr-containing nano bioactive glass. Silicon 1–8

    Google Scholar 

  • Song G (2007) Control of biodegradation of biocompatable magnesium alloys. Corros Sci 49:1696–1701

    Article  Google Scholar 

  • Stan GE, Morosanu CO, Marcov DA, Pasuk I, Miculescu F, Reumont G (2009) Effect of annealing upon the structure and adhesion properties of sputtered bio-glass/titanium coatings. Appl Surf Sci 255:9132–9138

    Article  Google Scholar 

  • Takeshita F, Ayukawa Y, Iyama S, Suetsugu T, Kido MA (1996) A histologic evaluation of retrieved hydroxyapatite-coated blade-form implants using scanning electron, light, and confocal laser scanning microscopies. J Periodontol 67:1034–1040

    Article  Google Scholar 

  • Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC (2009) Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 3:208–217

    Article  Google Scholar 

  • Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J (2014) Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2:4593–4609

    Article  Google Scholar 

  • Tsuji H, Ikarashi K (2004) In vitro hydrolysis of poly(l-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37 °C. Biomaterials 25:5449–5455

    Article  Google Scholar 

  • Uchida M, Oyane A, Kim H, Kokubo T, Ito A (2004) Biomimetic coating of laminin-apatite composite on titanium metal and its excellent cell-adhesive properties. Adv Mater 16:1071–1074

    Article  Google Scholar 

  • Ulbricht J, Jordan R, Luxenhofer R (2014) On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 35:4848–4861

    Article  Google Scholar 

  • Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci, Part B: Polym Phys 49:832–864

    Article  Google Scholar 

  • Vallet-Regí M, Ragel C, Salinas AJ (2003) Glasses with medical applications. Eur J Inorg Chem 2003:1029–1042

    Article  Google Scholar 

  • Van der Giessen WJ, van Beusekorn HM, Eijgelshoven MH, Morel MA, Serruys PW (1998) Heparin-coating of coronary stents. Semin Interv Cardiol 3:173–176

    Google Scholar 

  • Vanderleyden E, Van Bael S, Chai YS, Kruth JP, Schrooten J, Dubruel P (2014) Gelatin functionalized porous titanium alloy implants for orthopaedic applications. Mater Sci Eng C Mater Biol Appl 42:396–404

    Article  Google Scholar 

  • Vasitaa R, Shanmugama K, Kattia DS (2008) Improved biomaterials for tissue engineering. Curr Topics Med Chem 8:341–353

    Article  Google Scholar 

  • Venkateswarlu K, Rameshbabu N, Chandra Bose A, Muthupandi V, Subramanian S, Mubarakali D, Thajuddin N (2012) Fabrication of corrosion resistant, bioactive and antibacterial silver substituted hydroxyapatite/titania composite coating on Cp Ti. Ceram Int 38:731–740. doi:10.1016/j.ceramint.2011.07.065

    Article  Google Scholar 

  • Verné E, Vitale-Brovarone C, Bui E, Bianchi CL, Boccaccini AR (2009) Surface functionalization of bioactive glasses. J Biomed Mater Res, Part A 90:981–992

    Article  Google Scholar 

  • Wallace G, Spinks G (2007) Conducting polymers–bridging the bionic interface. Soft Matter 3:665–671

    Article  Google Scholar 

  • Wang C, Ma J, Cheng W, Zhang R (2002) Thick hydroxyapatite coatings by electrophoretic deposition. Mater Lett 57:99–105

    Article  Google Scholar 

  • Wang G, Zreiqat H (2010) Functional coatings or films for hard-tissue applications. Materials (Basel) 3:3994–4050

    Article  Google Scholar 

  • Wang HG, Yin TY, Ge SP, Zhang Q, Dong QL, Lei DX, Sun DM, Wang GX (2013) Biofunctionalization of titanium surface with multilayer films modified by heparin-VEGF-fibronectin complex to improve endothelial cell proliferation and blood compatibility. J Biomed Mater Res A 101:413–420

    Article  Google Scholar 

  • Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151

    Article  Google Scholar 

  • Wang S, Lacefield WR, Lemons JE (1996) Interfacial shear strength and histology of plasma sprayed and sintered hydroxyapatite implants in vivo. Biomaterials 17:1965–1970

    Article  Google Scholar 

  • Wendel HP, Ziemer G (1999) Coating techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur J Cardiothorac Surg 16:342–350

    Article  Google Scholar 

  • Williams D (2000) Perspective on the contributions of biomaterials and tissue-engineering to bone repair, reconstruction, and regeneration. In: Davies JE (ed) Bone engineering, pp 577–584

    Google Scholar 

  • Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J (2000) Improved endothelialization of vascular grafts by local release of growth factor from heparinized collagen matrices. J Control Release 64:103–114

    Article  Google Scholar 

  • Wojak-Cwik IM, Hintze V, Schnabelrauch M, Moeller S, Dobrzynski P, Pamula E, Scharnweber D (2013) Poly(L-lactide-co-glycolide)scaffolds coated with collagen and glycosaminoglycans: impact on proliferation and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res 101A:3109–3122

    Google Scholar 

  • Wolf-Brandstetter C, Lode A, Hanke T, Scharnweber D, Worch H (2006) Influence of modified extracellular matrices on Ti-6Al-4V implants on binding and release of VEGF. J Biomed Mater Res 79A:882–894

    Article  Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. Berlin A. Hirchwild (trans. Maquet P, Furlong R (1986). The Law of Bone Remodelling)

    Google Scholar 

  • Xiao XF, Liu RF (2006) Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater Lett 60:2627–2632

    Article  Google Scholar 

  • Xue Y, Xiao H, Zhang Y (2015) Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci 16:3626–3655

    Article  Google Scholar 

  • Yamamuro T, Hench LL, Wilson J (1990) CRC handbook of bioactive ceramics: bioactive glasses and glass-ceramics. In Calcium Phosphate and Hydroxylapatite ceramics, vol 2. CRC press

    Google Scholar 

  • Yang J, Cai Y, Hu Y, Li D, Du Y (2012) Preparation, characterization and antimicrobial activity of 6-amino-6-deoxychitosan. Carbohydr Polym 87:202–209

    Article  Google Scholar 

  • Yang Y, Kim K-H, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process–an alternative to plasma spraying. Biomaterials 26:327–337. doi:10.1016/j.biomaterials.2004.02.029

    Article  Google Scholar 

  • Zankovych S, Diefenbeck M, Bossert J, Mückley T, Schrader C, Schmidt J, Schubert H, Bischoff S, Faucon M, Finger U, Jandt KD (2013) The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats. Acta Biomater 9:4926–4934

    Article  Google Scholar 

  • Zhang C, Leng Y, Chen J (2001) In vitro mechanical integrity of hydroxyapatite coatings on Ti-6Al-4V implants under shear loading. J Biomed Mater Res 56:342–350

    Article  Google Scholar 

  • Zhang S (2013) Hydroxyapatite coatings for biomedical applications. CRC Press

    Google Scholar 

  • Zheng X, Huang M, Ding C (2000) Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21:841–849

    Article  Google Scholar 

  • Zhitomirsky I, Gal-Or L (1997) Electrophoretic deposition of hydroxyapatite. J Mater Sci Mater Med 8:213–219

    Article  Google Scholar 

  • Zhou R, Wei D, Feng W, Cheng S, Yang H, Li B, Wang Y, Jia D, Zhou Y (2014) Bioactive coating with hierarchical double porous structure on titanium surface formed by two-step microarc oxidation treatment. Surf Coatings Technol 252:148–156

    Article  Google Scholar 

  • Zoulalian V, Monge S, Zürcher S, Textor M, Robin JJ, Tosatti S (2006) Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates). J Phys Chem B 110:25603–25605

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the EU funded 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES project which has facilitated our collaboration in producing this book chapter as well as Antonio Rafa Ruiz Gonzalez and Dr. Joao Restivo for proof reading this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Leong Choy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Choy, K.L., Schnabelrauch, M., Wyrwa, R. (2018). Bioactive Coatings. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics