Skip to main content
Log in

Antimicrobial activity of gentamicin palmitate against high concentrations of Staphylococcus aureus

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The reduction of implant related infections plays a pivotal role in orthopaedic surgery as an increasing number of people require implants (up to 200,000 per year in the United States (source: Joint Implant Surgery & Research Foundation 2010)). The aim of the current study is to prevent and thus decrease the number of bacterial infections. Both pre and post operative systemic antibiotic treatment and gentamicin containing bone cements (polymethylmethacrylate, PMMA) are commonly used strategies to overcome infections. In this study, the antimicrobial efficacy of gentamicin sulfate loaded bone cement was compared with titan discs coated with a new form of gentamicin, gentamicin palmitate. Adherence prevention, killing rates and killing kinetics were compared in an in vitro model, using Staphylococcus aureus (S. aureus), which together with Staphylococcus epidermidis (S. epidermidis) represents 60% of bacteria found responsible for hip implant infections (An and Friedman, 1996, J Hosp Infect 33(2):93–108). In our experiments gentamicin, which was applied as gentamicin palmitate on the surface of the implants, showed a high efficacy in eliminating bacteria. In contrast to gentamicin sulfate containing bone cements, gentamicin palmitate is released over a shorter period of time thus not inducing antibiotic resistance. Another benefit for clinical application is that it achieves high local levels of active ingredient which fight early infections and minimize toxic side effects. Furthermore, the short term hydrophobic effect of gentamicin palmitate can successfully impede biofilm formation. Thus, the use of self-adhesive antibiotic fatty acid complexes like gentamicin palmitate represents a new option for the anti-infective coating of cementless titan implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ti1a/Ti1b:

Titan discs with high/low concentration of gentamicin palmitate

Ti2a/Ti2b:

Titan discs with high/low concentration of gentamicin palmitate

Ti3a/Ti3b:

Titan discs with high/low concentration of gentamicin palmitate

PMMA1:

Commercially available bone cement without gentamicin

PMMA2:

Commercially available bone cement with gentamicin sulfate

References

  1. Kadurugamuwa JL, Clarke AJ, Beveridge TJ. Surface action of gentamicin on Pseudomonas aeruginosa. J Bacteriol. 1993;175(18):5798–805.

    CAS  Google Scholar 

  2. Abou-Zeid AA, Shehata YM. Gentamicins. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1977;132(2):97–108.

    CAS  Google Scholar 

  3. Gillespie WJ, Walenkamp GH. Antibiotic prophylaxis for surgery for proximal femoral and other closed long bone fractures. Cochrane Database Syst Rev. 2010;3:CD000244.

    Google Scholar 

  4. Dunbar MJ. Antibiotic bone cements: their use in routine primary total joint arthroplasty is justified. Orthopedics 2009;32(9):10.3928/01477447-20090728-20.

  5. Buchholz HW, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins. Chirurg. 1970;41(11):511–5.

    CAS  Google Scholar 

  6. Wahlig H, Dingeldein E. Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand. 1980;51(1):49–56.

    Article  CAS  Google Scholar 

  7. van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ. Influence of interfaces on microbial activity. Microbiol Rev. 1990;54(1):75–87.

    Google Scholar 

  8. Clauss M, Trampuz A, Borens O, Bohner M, Ilchmann T. Biofilm formation on bone grafts and bone graft substitutes: comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomater. 2010;6(9):3791–7.

    Article  CAS  Google Scholar 

  9. Erli HJ, Marx R, Paar O, Niethard FU, Weber M, Wirtz DC. Surface pretreatments for medical application of adhesion. Biomed Eng Online. 2003;2:15.

    Article  Google Scholar 

  10. Vogt S, Kühn K-D, Gopp U, Schnabelrauch M. Resorbable antibiotic coatings for bone substitutes and implantable devices. Mat- wiss U Werkstofftechn. 2005;36:814–9.

    Article  CAS  Google Scholar 

  11. Anagnostakos K, Wilmes P, Schmitt E, Kelm J. Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop. 2009;80(2):193–7.

    Article  Google Scholar 

  12. Tunney MM, Ramage G, Patrick S, Nixon JR, Murphy PG, Gorman SP. Antimicrobial susceptibility of bacteria isolated from orthopedic implants following revision hip surgery. Antimicrob Agents Chemother. 1998;42(11):3002–5.

    CAS  Google Scholar 

  13. Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials. 2003;24(10):1829–31.

    Article  CAS  Google Scholar 

  14. Kalicke T, Schierholz J, Schlegel U, Frangen TM, Koller M, Printzen G, et al. Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study. J Orthop Res. 2006;24(8):1622–40.

    Article  Google Scholar 

  15. Vogt S, Schnabelrauch M, Kühn K-D. Porous implants with antibiotic coating, their preparation and use. Antimicrob Agents Chemother. 2008;52(6):1957–63.

    Article  Google Scholar 

  16. Matl FD, Obermeier A, Repmann S, Friess W, Stemberger A, Kuehn KD. New anti-infective coatings of medical implants. Antimicrob Agents Chemother. 2008;52(6):1957–63.

    Article  CAS  Google Scholar 

  17. Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ. The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91(1):128–33.

    Article  Google Scholar 

  18. Swanson TE, Cheng X, Friedrich C. Development of chitosan-vancomycin antimicrobial coatings on titanium implants. J Biomed Mater Res A. 2011;97(2):167–76.

    CAS  Google Scholar 

  19. Fini M, Giavaresi G, Setti S, Martini L, Torricelli P, Giardino R. Current trends in the enhancement of biomaterial osteointegration: biophysical stimulation. Int J Artif Organs. 2004;27(8):681–90.

    CAS  Google Scholar 

  20. Epinette JA, Manley MT. Uncemented stems in hip replacement–hydroxyapatite or plain porous: does it matter? Based on a prospective study of HA Omnifit stems at 15-years minimum follow-up. Hip Int. 2008;18(2):69–74.

    Google Scholar 

  21. Zilberman M, Kraitzer A, Grinberg O, Elsner JJ. Drug-eluting medical implants. Handb Exp Pharmacol. 2010;197:299–341.

    Google Scholar 

  22. Strobel C, Schmidmaier G, Wildemann B. Changing the release kinetics of gentamicin from poly(D,L-lactide) implant coatings using only one polymer. Int J Artif Organs. 2011;34(3):304–16.

    Article  Google Scholar 

  23. El-Husseiny M, Patel S, MacFarlane RJ, Haddad FS. Biodegradable antibiotic delivery systems. J Bone Joint Surg Br. 2011;93(2):151–7.

    Article  CAS  Google Scholar 

  24. Parvizi J, Saleh KJ, Ragland PS, Pour AE, Mont MA. Efficacy of antibiotic-impregnated cement in total hip replacement. Acta Orthop. 2008;79(3):335–41.

    Article  Google Scholar 

  25. Kühn K. In vitro release of gentamicinpalmitate coating in uncemented titanium implants. IJNBM. 2010;3(1):94–106.

    Article  Google Scholar 

  26. Schafer JA, Hovde LB, Rotschafer JC. Consistent rates of kill of Staphylococcus aureus by gentamicin over a 6-fold clinical concentration range in an in vitro pharmacodynamic model (IVPDM). J Antimicrob Chemother. 2006;58(1):108–11.

    Article  CAS  Google Scholar 

  27. Kühn KD, Brünke J. Effectiveness of a novel gentamicinpalmitate coating on biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis. IJNBM. 2010;3(1):107–17.

    Article  Google Scholar 

  28. Everaert EP, Mahieu HF, Wong Chung RP, Verkerke GJ, van der Mei HC, Busscher HJ. A new method for in vivo evaluation of biofilms on surface-modified silicone rubber voice prostheses. Eur Arch Otorhinolaryngol. 1997;254(6):261–3.

    Article  CAS  Google Scholar 

  29. van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand. 2001;72(6):557–71.

    Article  Google Scholar 

  30. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–9.

    Article  CAS  Google Scholar 

  31. An YH, Friedman RJ. Prevention of sepsis in total joint arthroplasty. J Hosp Infect. 1996;33(2):93–108.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Kittinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kittinger, C., Marth, E., Windhager, R. et al. Antimicrobial activity of gentamicin palmitate against high concentrations of Staphylococcus aureus . J Mater Sci: Mater Med 22, 1447–1453 (2011). https://doi.org/10.1007/s10856-011-4333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4333-4

Keywords

Navigation