Investigation of Contact Settings on the Result of Topology Optimization to Avoid Contact Stiffness Supports

  • Daniel Billenstein
  • Christian Glenk
  • Pascal Diwisch
  • Frank Rieg
Conference paper


Considering adjacent parts in the finite element analysis (FEA) leads to a contact problem. There are several necessary configuration parameters in computational contact mechanics, like the contact stiffness or discretization. Due to this variety there is a multitude of papers regarding the correct range for contact parameters in terms of FEA.

In topology optimization - especially if the optimization target is set to maximal stiffness - the configuration of the contact problem is much more sophisticated. An overlarge contact stiffness for example leads to a phenomena which is called contact stiffness supports within this paper. This behavior results in a design proposal, which causes major load flow through the contact zone, whereas the rest of the component is removed.

The most difficult part in determining the appropriate range for configuration parameters is comparing different simulations. In topology optimization, it is not sufficient to compare certain stress or displacement values of selected degrees of freedom like it is common in structural mechanic simulations. Instead it is necessary to collate the topology of the resulting design proposals.

For this purpose an evaluation algorithm was designed, which supersedes the necessity of a visual evaluation by describing the similarity of two design proposals by means of a histogram. The result of a simulation with the identical design space but with a matching mesh - thus without contact zone - is used as reference for this computer-aided evaluation. This automated investigation of arbitrary contact configurations shows, that the values of the parameters are usually within the standard values (recommended in literature), but in a notably smaller interval. In general, smaller contact stiffness is required and the examined parameters are more sensitive in topology optimization. The valid intervals for configuration parameters, which were determined by this method, enable a more realistic way of considering the elastic environment in stiffness optimization.


Topology optimization Contact stiffness supports Computer-aided evaluation of design proposals Computational contact mechanics 


  1. 1.
    Frisch, M., Glenk, C., Dörnhöfer, A., Rieg, F.: Topologieoptimierung in kleinen und mittelständischen Unternehmen - Von der erfahrungsbasierten Konstruktion zum Einsatz der Topologieoptimierung im Produktentwicklungsprozess. Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF) 111, 243–246 (2016)CrossRefGoogle Scholar
  2. 2.
    Ehrlenspiel, K., Kiewert, A., Lindemann, U.: Kostengünstig Entwickeln und Konstruieren: Kostenmanagement bei der integrierten Produktentwicklung. Springer, Berlin (2013)CrossRefGoogle Scholar
  3. 3.
    Albers, A., Nowicki, L.: Integration der Simulation in die Produktentwicklung - Neue Möglichkeiten zur Steigerung der Qualität und Effizienz in der Produktentwicklung. In: Symposium: Simulation in der Produkt- und Prozessentwicklung, 5–7 November 2003, Bremen, Germany, pp. 141–147 (2003)Google Scholar
  4. 4.
    Schumacher, A.: Optimierung mechanischer Strukturen: Grundlagen und industrielle Anwendungen. Springer, Berlin (2013)CrossRefGoogle Scholar
  5. 5.
    Dörnhöfer, A.: Leichtbau mit partikelverstärkten Magnesiumlegierungen: Integration von virtueller Werkstoffentwicklung und Topologieoptimierung in den Produktentwicklungsprozess. Shaker Verlag, Dissertation, Universität Bayreuth (2008)Google Scholar
  6. 6.
    Eschenauer, H.: Rechnerische und experimentelle Untersuchungen zur Strukturoptimierung von Bauteilen. Univ.-Gesamthochschule Siegen, Deutsche Forschungsgemeinschaft (DFG) (1985)Google Scholar
  7. 7.
    Harzheim, L.: Strukturoptimierung: Grundlagen und Anwendungen. Harri Deutsch, Frankfurt am Main (2014)Google Scholar
  8. 8.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory. Methods and Applications. Springer, Berlin (2003)MATHGoogle Scholar
  9. 9.
    Frisch, M.: Entwicklung eines Hybridalgorithmus zur steifigkeits- und spannungsoptimierten Auslegung von Konstruktionselementen. Shaker Verlag, Dissertation, Universität Bayreuth (2015)Google Scholar
  10. 10.
    Olhoff, N., Bendsøe, M.P., Rasmussen, J.: On CAD-integrated structural topology and design optimization. Comput. Methods Appl. Mech. Eng. 89, 259–279 (1991)CrossRefMATHGoogle Scholar
  11. 11.
    Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2003)CrossRefGoogle Scholar
  12. 12.
    Nützel, F.: Entwicklung und Anwendung eines Finite-Elemente-Systems auf Basis von Z88 zur Berechnung von Kontaktaufgaben aus der Antriebstechnik. Shaker Verlag, Dissertation, Universität Bayreuth (2015)Google Scholar
  13. 13.
    Wriggers, P.: Finite element algorithms for contact problems. Arch. Comput. Methods Eng. 2–4, 1–49 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Cook, R., Malkus, D., Plesha, M., Witt, R.: Concepts and Applications of Finite Element Analysis. Wiley, New York (2001)Google Scholar
  16. 16.
    Zienkiewicz, O., Taylor, R., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, Burlington (2013)MATHGoogle Scholar
  17. 17.
    Felippa, C.: Introduction to Finite Element Methods. University of Colorado (2017).
  18. 18.
    Billenstein, D., Zimmermann, M., Diwisch, P., Rieg, F.: Speedup of an iterative FE-Solver due to an optimal preconditioning having regard to the imposition of constraints. In: NAFEMS World Congress 2017, Stockholm, Schweden (2017)Google Scholar
  19. 19.
    Bathe, K.-J.: Finite Element Procedures. K.J. Bathe Publishing, Boston (2014)MATHGoogle Scholar
  20. 20.
    Reference Manual, N.N.: Intel Math Kernel Library 11.2 (2014)Google Scholar
  21. 21.
    Dassault Systemes, N.N.: Abaqus Analysis User’s Guide 6.13 (2013)Google Scholar
  22. 22.
    Rieg, F., Hackenschmidt, R., Alber-Laukant, B.: Finite Element Analysis for Engineers: Basiscs and Practical Applications with Z88 Aurora. Hanser Verlag, München (2014)CrossRefMATHGoogle Scholar
  23. 23.
    Wagner, N., Helfrich, R.: Topology and shape optimization of structures under contact conditions. In: European Conference: Simulation-Based Optimisation, NAFEMS, Manchester, United Kingdom (2016)Google Scholar
  24. 24.
    Bartelme, N.: Geoinformatik: Modelle, Strukturen. Funktionen. Springer, Berlin (2005)Google Scholar
  25. 25.
    Kalkhan, M.A.: Spatial Statistics: GeoSpatial Information Modeling and Thematic Mapping. CRC Press, Boca Raton (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Daniel Billenstein
    • 1
  • Christian Glenk
    • 1
  • Pascal Diwisch
    • 1
  • Frank Rieg
    • 1
  1. 1.University of BayreuthBayreuthGermany

Personalised recommendations