Skip to main content

Electronic-Automated Micro-NMR Assay with DMF Device

  • Chapter
  • First Online:
Handheld Total Chemical and Biological Analysis Systems
  • 641 Accesses

Abstract

We describe a micro-NMR relaxometer miniaturized into palm size and electronic-automated for multistep multi-sample chemical/biological diagnosis. The co-integration of microfluidic and microelectronic technologies enables association between droplet managements and micro-NMR assays inside a portable sub-Tesla magnet (1.2 kg, 0.46 Tesla). Targets captured by specific probe-decorated magnetic nanoparticles can be sequentially quantified by their spin-spin relaxation time via multiplexed micro-NMR screening. Distinct droplet samples are operated by a digital microfluidic device that electronically manages the electrowetting-on-dielectric effects over an electrode array. Each electrode (3.5 × 3.5 mm2) is scanned with capacitive sensing to locate distinct droplet samples in real time. A cross-domain-optimized Butterfly-coil-input semiconductor transceiver transduces between magnetic and electrical signals to/from a sub-10 μL droplet sample for high-sensitivity micro-NMR screening. We have implemented two prototypes. The first prototype was implemented with discrete electronics for verification of functionality, while the second prototype was designed with a CMOS TRX for better performance. Fabricated in 0.18-μm CMOS, the TRX occupies a die area of 2.1 mm2, consumes 6.6/23.7 mW of power in the TX/RX mode, and demonstrates the feasibility of electronic-automated biological (avidin) and chemical (CuSO4) assays achieving a detection limit on avidin of 0.2 pmol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Trumbull, I.K. Glasgow, D.J. Beebe, R.L. Magin, Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Trans. Biomed. Eng. 47(1), 3–7 (2000)

    Article  Google Scholar 

  2. H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14(8), 869–874 (2008)

    Article  Google Scholar 

  3. C. Massin, F. Vincent, A. Homsy, K. Ehrmann, G. Boero, P.A. Besse, et al., Planar microcoil-based microfluidic NMR probes. J. Magn. Reson. 164(2), 242–255 (2003)

    Article  Google Scholar 

  4. I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital microfluidics for cell-based assays. Lab Chip 8(4), 519–526 (2008)

    Article  Google Scholar 

  5. J. Gao, X.M. Liu, T.L. Chen, P.I. Mak, Y.G. Du, M.I. Vai, et al., An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13(3), 443–451 (2013)

    Article  Google Scholar 

  6. F. Lapierre, M. Harnois, Y. Coffinier, R. Boukherroub, V. Thomy, Split and flow: reconfigurable capillary connection for digital microfluidic devices. Lab Chip 14(18), 3589–3593 (2014)

    Article  Google Scholar 

  7. M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)

    Article  Google Scholar 

  8. M.H. Shamsi, K. Choi, A.H.C. Ng, A.R. Wheeler, A digital microfluidic electrochemical immunoassay. Lab Chip 14(3), 547–554 (2014)

    Article  Google Scholar 

  9. V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4), 310–315 (2004)

    Article  Google Scholar 

  10. A.R. Wheeler, Chemistry—putting electrowetting to work. Science 322(5901), 539–540 (2008)

    Article  Google Scholar 

  11. I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12), 1536–1542 (2010)

    Article  Google Scholar 

  12. G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu, C.-J. Kim, EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9(12), 1732–1739 (2009)

    Article  Google Scholar 

  13. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, et al., Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)

    Article  Google Scholar 

  14. Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, J.-L. Lin, Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed. Microdevices 8(3), 215–225 (2006)

    Article  Google Scholar 

  15. Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, et al., Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)

    Article  Google Scholar 

  16. D. Witters, K. Knez, F. Ceyssens, R. Puers, J. Lammertyn, Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13(11), 2047–2054 (2013)

    Article  Google Scholar 

  17. N. Sun, T.J. Yoon, H. Lee, W. Andress, R. Weissleder, D. Ham, Palm NMR and 1-Chip NMR. IEEE J. Solid State Circuits 46(1), 342–352 (2011)

    Article  Google Scholar 

  18. J. Kim, B. Hammer, R. Harjani, A 5–300MHz CMOS transceiver for multi-nuclear NMR spectroscopy, in Proceeding IEEE Custom Integrated Circuits Conference (CICC), 2012, pp. 1–4

    Google Scholar 

  19. J. Anders, P. SanGiorgio, G. Boero, A fully integrated IQ-receiver for NMR microscopy. J. Magn. Reson. 209(1), 1–7 (2011)

    Article  Google Scholar 

  20. D.I. Hoult, R.E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24(1), 71–85 (1976)

    Google Scholar 

  21. N. Sun, Y. Liu, H. Lee, R. Weissleder, D. Ham, CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid State Circuits 44(5), 1629–1643 (2009)

    Article  Google Scholar 

  22. P. Andreani, K. Kozmin, P. Sandrup, M. Nilsson, T. Mattsson, A TX VCO for WCDMA/EDGE in 90 nm RF CMOS. IEEE J. Solid State Circuits 46(7), 1618–1626 (2011)

    Article  Google Scholar 

  23. T. Mattsson, Method of and inductor layout for reduced VCO coupling, US Patent US 7,151,430, 19 Dec 2006

    Google Scholar 

  24. M. Nagata, H. Masuoka, S.I. Fukase, M. Kikuta, M. Morita, N. Itoh, 5.8 GHz RF transceiver LSI including on-chip matching circuits, in 2006 Bipolar/BiCMOS Circuits and Tech. Meeting, 2006, pp. 263–266

    Google Scholar 

  25. F. Mugele, J.C. Baret, Electrowetting: from basics to applications. J. Phys. Condens. Matter 17(28), R705–R774 (2005)

    Article  Google Scholar 

  26. F. Fiorillo, C. Beatrice, Energy losses in soft magnets from DC to radiofrequencies: theory and experiment. J. Supercond. Nov. Magn. 24(1–2), 559–566 (2011)

    Article  Google Scholar 

  27. W.K. Peng, L. Chen, J. Han, Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. Rev. Sci. Instrum. 83(9), 095115 (2012)

    Article  Google Scholar 

  28. J.M. Pope, N. Repin, A simple approach to T2 imaging in MRI. Magn. Reson. Imaging 6(6), 641–646 (1988)

    Article  Google Scholar 

  29. B. Blumich, J. Perlo, F. Casanova, Mobile single-sided NMR. Prog. Nucl. Magn. Reson. Spectrosc. 52(4), 197–269 (2008)

    Article  Google Scholar 

  30. T.T. Zhang, P.I. Mak, M.I. Vai, P.U. Mak, M.K. Law, S.H. Pun, et al., 15-nW biopotential LPFs in 0.35-μm CMOS using subthreshold-source-follower biquads with and without gain compensation. IEEE Trans. Biomed. Circuits Syst. 7(5), 690–702 (2013)

    Article  Google Scholar 

  31. S. D’Amico, M. Conta, A. Baschirotto, A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR. IEEE J. Solid State Circuits 41(12), 2713–2719 (2006)

    Article  Google Scholar 

  32. J. Watzlaw, S. Gloggler, B. Blumich, W. Mokwa, U. Schnakenberg, Stacked planar micro coils for single-sided NMR applications. J. Magn. Reson. 230(1), 176–185 (2013)

    Article  Google Scholar 

  33. J. Gong, C.J. Kim, All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8(6), 898–906 (2008)

    Article  Google Scholar 

  34. V. Gubala, L.F. Harris, A.J. Ricco, M.X. Tan, D.E. Williams, Point of care diagnostics: status and future. Anal. Chem. 84(2), 487–515 (2012)

    Article  Google Scholar 

  35. P.Y. Keng, S.P. Chen, H.J. Ding, S. Sadeghi, G.J. Shah, A. Dooraghi, et al., Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proc. Nat. Acad. Sci. (PNAS) 109(3), 690–695 (2012)

    Article  Google Scholar 

  36. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, NMR–DMF: a modular nuclear magnetic resonance–digital microfluidics system for biological assays. Analyst 139(23), 6204–6213 (2014)

    Article  Google Scholar 

  37. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A thermal-insensitive all-electronic modular μNMR relaxometer with a 2D digital microfluidic chip for sample management, in Proceeding 19th International Conference on Miniaturized System Chemistry and Life Sciences (MicroTAS), 2015, pp. 302–304

    Google Scholar 

  38. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a Butterfly-coil input for integration with a digital microfluidic device inside a portable magnet, in Proceeding IEEE Asian Solid-State Circuits Conference (A-SSCC), 2015, pp. 1–4

    Google Scholar 

  39. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A palm-size μNMR relaxometer using a digital microfluidic device and a semiconductor transceiver for chemical/biological diagnosis. Analyst 140(15), 5129–5137 (2015)

    Article  Google Scholar 

  40. K.-M. Lei, P.-I. Mak, M.-K. Law, R.P. Martins, A μNMR CMOS transceiver using a Butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J. Solid State Circuits 51(10), 2274–2286 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lei, KM., Mak, PI., Law, MK., Martins, R.P. (2018). Electronic-Automated Micro-NMR Assay with DMF Device. In: Handheld Total Chemical and Biological Analysis Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-67825-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67825-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67824-5

  • Online ISBN: 978-3-319-67825-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics