Robust Plasma Vertical Stabilization in Tokamak Devices via Multi-objective Optimization

  • Gianmaria De TommasiEmail author
  • Adriano Mele
  • Alfredo Pironti
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 217)


In this paper we present a robust design procedure for plasma vertical stabilization systems in tokamak fusion devices. The proposed approach is based on the solution of a multi-objective optimization problem, whose solution is aimed at obtaining the desired stability margins under different plasma operative scenarios. The effectiveness of the proposed approach is shown by applying it to the ITER-like vertical stabilization system recently tested on the EAST tokamak.


Control theory Robust control Multi-objective optimization Control in nuclear fusion devices 


  1. 1.
    Albanese, R., et al.: A MIMO architecture for integrated control of plasma shape and flux expansion for the EAST tokamak. In: Proceedings of the 2016 IEEE Multi-Conference on Systems and Control, Buenos Aires, Argentina, pp. 611–616(September 2016)Google Scholar
  2. 2.
    Albanese, R. et al.: ITER-like vertical stabilization system for the EAST Tokamak. Nucl. Fus. 57(8), 086039 (2017)Google Scholar
  3. 3.
    Ambrosino, G., Ariola, M., De Tommasi, G., Pironti, A.: Plasma vertical stabilization in the ITER Tokamak via constrained static output feedback. IEEE Trans. Contr. Sys. Tech. 19(2), 376–381 (2011)CrossRefGoogle Scholar
  4. 4.
    Ambrosino, G., Ariola, M., DeTommasi, G., Pironti, A.: Robust vertical control of ITER plasmas via static output feedback. In: Proceedings of the 2011 IEEE Multi-Conference on Systems Control, Denver, Colorado, pp. 276–281 (September 2011)Google Scholar
  5. 5.
    Ariola, M., Pironti, A.: Magnetic Control of Tokamak Plasmas. \(2{\rm {nd}}\) edition, Springer (2016)Google Scholar
  6. 6.
    Beghi, A., Cenedese, A.: Advances in real-time plasma boundary reconstruction. IEEE Control Sys. Mag. 25(5), 44–64 (2005)CrossRefGoogle Scholar
  7. 7.
    Brayton, R. K., Director, S. W., Hachtel, G. D., Vidigal, L.: A new algorithm for statistical circuit design based on quasi-newton methods and function splitting. IEEE Trans. Circuits Syst, CAS-26(9), 784–794 (September 1979)Google Scholar
  8. 8.
    Cruz, N., et al.: Control-oriented tools for the design and validation of the JT-60SA magnetic control system. Contr. Eng. Pract. 63, 81–90 (2017)CrossRefGoogle Scholar
  9. 9.
    De Tommasi, G., et al.: XSC Tools: a software suite for tokamak plasma shape control design and validation. IEEE Trans. Plasma Sci. 35(3), 709–723 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    De Tommasi, G., et al.: Current, position, and shape control in tokamaks. Fusion Sci. Technol. 59(3), 486–498 (2011)CrossRefGoogle Scholar
  11. 11.
    De Tommasi, G., Neto, A.C., Sterle, C.: PIMPA: a tool for oPtImal measurement probes allocation. IEEE Trans. Plasma Sci. 42(4), 976–983 (2014)CrossRefGoogle Scholar
  12. 12.
    Franklin, G. Powell, J. D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Prentice Hall, \(5{\rm {th}}\) edn (2006)Google Scholar
  13. 13.
    Gembicki, F. W.: Vector optimization for control with performance and parameter sensitivity indices. Ph.D thesis, Case Western Reserve University, Cleveland, OH (1974)Google Scholar
  14. 14.
    Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22(3), 297–309 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kim, H.K., et al.: Design features of the KSTAR in-vessel control coils. Fus. Eng. Des. 84(2–6), 1029–1032 (2009)CrossRefGoogle Scholar
  16. 16.
    Neto, A., et al.: Exploitation of modularity in the JET tokamak vertical stabilization system. Control Eng. Pract. 20(9), 846–856 (2012)CrossRefGoogle Scholar
  17. 17.
    Neto, A.C., et al.: Conceptual architecture of the plant system controller for the magnetics diagnostic of the ITER tokamak. Fus. Eng. Des. 96–97, 887–890 (2015)CrossRefGoogle Scholar
  18. 18.
    Powell, M. J. D.: Numerical analysis, volume 630 of lecture notes in mathematics, chapter a fast algorithm for nonlinear constrained optimization calculations, pp. 144–157. Springer (1978)Google Scholar
  19. 19.
    Sartori, F., De Tommasi, G., Piccolo, F.: The joint European torus. IEEE Control Sys. Mag. 26(2), 64–78 (2006)CrossRefGoogle Scholar
  20. 20.
    Wesson, J.: Tokamaks. Oxford University Press (2004)Google Scholar
  21. 21.
    Yuan, Q.P., et al.: Plasma current, position and shape feedback control on EAST. Nucl. Fus. 53(4), 043009 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gianmaria De Tommasi
    • 1
    Email author
  • Adriano Mele
    • 1
  • Alfredo Pironti
    • 1
  1. 1.Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’InformazioneUniversità degli Studi di Napoli Federico IINaplesItaly

Personalised recommendations