Skip to main content

Robust Plasma Vertical Stabilization in Tokamak Devices via Multi-objective Optimization

  • Conference paper
  • First Online:
Optimization and Decision Science: Methodologies and Applications (ODS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 217))

Included in the following conference series:

Abstract

In this paper we present a robust design procedure for plasma vertical stabilization systems in tokamak fusion devices. The proposed approach is based on the solution of a multi-objective optimization problem, whose solution is aimed at obtaining the desired stability margins under different plasma operative scenarios. The effectiveness of the proposed approach is shown by applying it to the ITER-like vertical stabilization system recently tested on the EAST tokamak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The tokamak concept was first developed in the former Soviet Union in the early 1960s. Indeed, the name tokamak stems from the Russian words for toroidal chamber and magnetic coil, which is toroidalnaya kamera i magnitnaya katiushka.

  2. 2.

    The speed gain is multiplied by \(I_{p_{ref}}\) in order to scale the overall gain according to the actual value of the plasma current.

  3. 3.

    The plasma linear models exploited to solve the optimization problem are generated by the CREATE magnetic equilibrium codes [9].

  4. 4.

    When computing the open loop transfer function, the simplified model of the power supply of the in-vessel circuit is also considered.

References

  1. Albanese, R., et al.: A MIMO architecture for integrated control of plasma shape and flux expansion for the EAST tokamak. In: Proceedings of the 2016 IEEE Multi-Conference on Systems and Control, Buenos Aires, Argentina, pp. 611–616(September 2016)

    Google Scholar 

  2. Albanese, R. et al.: ITER-like vertical stabilization system for the EAST Tokamak. Nucl. Fus. 57(8), 086039 (2017)

    Google Scholar 

  3. Ambrosino, G., Ariola, M., De Tommasi, G., Pironti, A.: Plasma vertical stabilization in the ITER Tokamak via constrained static output feedback. IEEE Trans. Contr. Sys. Tech. 19(2), 376–381 (2011)

    Article  Google Scholar 

  4. Ambrosino, G., Ariola, M., DeTommasi, G., Pironti, A.: Robust vertical control of ITER plasmas via static output feedback. In: Proceedings of the 2011 IEEE Multi-Conference on Systems Control, Denver, Colorado, pp. 276–281 (September 2011)

    Google Scholar 

  5. Ariola, M., Pironti, A.: Magnetic Control of Tokamak Plasmas. \(2{\rm {nd}}\) edition, Springer (2016)

    Google Scholar 

  6. Beghi, A., Cenedese, A.: Advances in real-time plasma boundary reconstruction. IEEE Control Sys. Mag. 25(5), 44–64 (2005)

    Article  Google Scholar 

  7. Brayton, R. K., Director, S. W., Hachtel, G. D., Vidigal, L.: A new algorithm for statistical circuit design based on quasi-newton methods and function splitting. IEEE Trans. Circuits Syst, CAS-26(9), 784–794 (September 1979)

    Google Scholar 

  8. Cruz, N., et al.: Control-oriented tools for the design and validation of the JT-60SA magnetic control system. Contr. Eng. Pract. 63, 81–90 (2017)

    Article  Google Scholar 

  9. De Tommasi, G., et al.: XSC Tools: a software suite for tokamak plasma shape control design and validation. IEEE Trans. Plasma Sci. 35(3), 709–723 (2007)

    Article  MathSciNet  Google Scholar 

  10. De Tommasi, G., et al.: Current, position, and shape control in tokamaks. Fusion Sci. Technol. 59(3), 486–498 (2011)

    Article  Google Scholar 

  11. De Tommasi, G., Neto, A.C., Sterle, C.: PIMPA: a tool for oPtImal measurement probes allocation. IEEE Trans. Plasma Sci. 42(4), 976–983 (2014)

    Article  Google Scholar 

  12. Franklin, G. Powell, J. D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Prentice Hall, \(5{\rm {th}}\) edn (2006)

    Google Scholar 

  13. Gembicki, F. W.: Vector optimization for control with performance and parameter sensitivity indices. Ph.D thesis, Case Western Reserve University, Cleveland, OH (1974)

    Google Scholar 

  14. Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22(3), 297–309 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, H.K., et al.: Design features of the KSTAR in-vessel control coils. Fus. Eng. Des. 84(2–6), 1029–1032 (2009)

    Article  Google Scholar 

  16. Neto, A., et al.: Exploitation of modularity in the JET tokamak vertical stabilization system. Control Eng. Pract. 20(9), 846–856 (2012)

    Article  Google Scholar 

  17. Neto, A.C., et al.: Conceptual architecture of the plant system controller for the magnetics diagnostic of the ITER tokamak. Fus. Eng. Des. 96–97, 887–890 (2015)

    Article  Google Scholar 

  18. Powell, M. J. D.: Numerical analysis, volume 630 of lecture notes in mathematics, chapter a fast algorithm for nonlinear constrained optimization calculations, pp. 144–157. Springer (1978)

    Google Scholar 

  19. Sartori, F., De Tommasi, G., Piccolo, F.: The joint European torus. IEEE Control Sys. Mag. 26(2), 64–78 (2006)

    Article  Google Scholar 

  20. Wesson, J.: Tokamaks. Oxford University Press (2004)

    Google Scholar 

  21. Yuan, Q.P., et al.: Plasma current, position and shape feedback control on EAST. Nucl. Fus. 53(4), 043009 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianmaria De Tommasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Tommasi, G., Mele, A., Pironti, A. (2017). Robust Plasma Vertical Stabilization in Tokamak Devices via Multi-objective Optimization. In: Sforza, A., Sterle, C. (eds) Optimization and Decision Science: Methodologies and Applications. ODS 2017. Springer Proceedings in Mathematics & Statistics, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-67308-0_31

Download citation

Publish with us

Policies and ethics