Multidimensional Analysis of the News Consumption of Different Demographic Groups on a Nationwide Scale

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10539)

Abstract

Examining 103,133 news articles that are the most popular for different demographic groups in Daum News (the second most popular news portal in South Korea) during the whole year of 2015, we provided multi-level analyses of gender and age differences in news consumption. We measured such differences in four different levels: (1) by actual news items, (2) by section, (3) by topic, and (4) by subtopic. We characterized the news items at the four levels by using the computational techniques, which are topic modeling and the vector representation of words and news items. We found that differences in news reading behavior across different demographic groups are the most noticeable in subtopic level but neither section nor topic levels.

Keywords

News consumption Online news News media News topic Daum News portal Demographics Gender differences Age differences 

References

  1. 1.
    Adar, E., Adamic, L.A.: Tracking information epidemics in blogspace. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 207–214. IEEE Computer Society, Washington, D.C. (2005)Google Scholar
  2. 2.
    Ahmed, M., Spagna, S., Huici, F., Niccolini, S.: A peek into the future: predicting the evolution of popularity in user generated content. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 607–616. ACM (2013)Google Scholar
  3. 3.
    An, J., Cha, M., Gummadi, K., Crowcroft, J.: Media landscape in Twitter: a world of new conventions and political diversity. In: ICWSM 2011: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, pp. 18–25 (2011)Google Scholar
  4. 4.
    An, J., Quercia, D., Cha, M., Gummadi, K., Crowcroft, J.: Sharing political news: the balancing act of intimacy and socialization in selective exposure. EPJ Data Sci. 3(1), 12 (2014)CrossRefGoogle Scholar
  5. 5.
    An, J., Quercia, D., Crowcroft, J.: Partisan sharing: Facebook evidence and societal consequences. In: CoSN 2014: Proceedings of the 2nd ACM Conference on Online Social Networks, pp. 13–24. ACM (2014)Google Scholar
  6. 6.
    Asur, S., Huberman, B.A., Szabo, G., Wang, C.: Trends in social media: persistence and decay. In: ICWSM 2011: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, pp. 434–437. Association for the Advancement of Artificial Intelligence (AAAI), Menlo Park (2011)Google Scholar
  7. 7.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.A.: The role of social networks in information diffusion. In: WWW 2012: Proceedings of the 21st International Conference on World Wide Web. ACM, New York (2012)Google Scholar
  8. 8.
    Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: forecasting popularity. In: ICWSM 2012: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media, pp. 26–33. Association for the Advancement of Artificial Intelligence (AAAI), Menlo Park (2012)Google Scholar
  9. 9.
    Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)MATHGoogle Scholar
  10. 10.
    Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Elsevier, Amsterdam (1997)Google Scholar
  11. 11.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATHGoogle Scholar
  12. 12.
    Casella, G., Berger, R.L.: Statistical Inference, vol. 2. Duxbury, Pacific Grove (2002)MATHGoogle Scholar
  13. 13.
    Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J., Leskovec, J.: Can cascades be predicted? In: WWW 2014: Proceedings of the 23th international conference on World Wide Web, pp. 925–936. ACM, New York (2014)Google Scholar
  14. 14.
    Chu, W., Park, S.T.: Personalized recommendation on dynamic content using predictive bilinear models. In: WWW 2009: Proceedings of the 18th International Conference on World Wide Web, pp. 691–700. ACM (2009)Google Scholar
  15. 15.
    Chyi, H.I., Lee, A.M.: Online news consumption: a structural model linking preference, use, and paying intent. Digit. Journal. 1(2), 194–211 (2013)CrossRefGoogle Scholar
  16. 16.
    Cross, S.E., Madson, L.: Models of the self: self-construals and gender. Psychol. Bull. 122(1), 5 (1997)CrossRefGoogle Scholar
  17. 17.
    Dow, P.A., Adamic, L.A., Friggeri, A.: The anatomy of large Facebook cascades. In: ICWSM 2013: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media, pp. 145–154. Association for the Advancement of Artificial Intelligence (AAAI), Menlo Park (2013)Google Scholar
  18. 18.
    d’Haenens, L., Jankowski, N., Heuvelman, A.: News in online and print newspapers: differences in reader consumption and recall. New Media Soc. 6(3), 363–382 (2004)CrossRefGoogle Scholar
  19. 19.
    Goel, S., Anderson, A., Hofman, J., Watts, D.J.: The structural virality of online diffusion. Manag. Sci. 62(1), 180–196 (2016)Google Scholar
  20. 20.
    Grabe, M.E., Kamhawi, R.: Hard wired for negative news? Gender differences in processing broadcast news. Commun. Res. 33(5), 346–369 (2006)CrossRefGoogle Scholar
  21. 21.
    Hansen, C.H., Hansen, R.D.: Music and music videos. In: Media Entertainment: The Psychology of its Appeal, pp. 175–196 (2000)Google Scholar
  22. 22.
    Hinton, G.E., McClelland, J.L., Rumelhart, D.E.: Distributed representations. In: Rumelhart, D.E., McClelland, J.L., PDP Research Group CORPORATE (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 77–109. MIT Press, Cambridge (1986). ISBN 0-262-68053-X. http://dl.acm.org/citation.cfm?id=104279.104287
  23. 23.
    Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM (1999)Google Scholar
  24. 24.
    Knobloch-Westerwick, S., Alter, S.: The gender news use divide: Americans’ sex-typed selective exposure to online news topics. J. Commun. 57(4), 739–758 (2007)CrossRefGoogle Scholar
  25. 25.
    Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., Kustarev, A.: Prediction of retweet cascade size over time. In: CIKM 2012: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2335–2338. ACM, New York (2012)Google Scholar
  26. 26.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: WWW 2010: Proceedings of the 19th International Conference on the World Wide Web, pp. 591–600. ACM, New York (2010)Google Scholar
  27. 27.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: ICML 2014: Proceedings of the 31st International Conference on Machine Learning, pp. 1188–1196. PMLR (2014)Google Scholar
  28. 28.
    Lerman, K., Hogg, T.: Using a model of social dynamics to predict popularity of news. In: WWW 2010: Proceedings of the 19th International Conference on World Wide Web, pp. 621–630. ACM (2010)Google Scholar
  29. 29.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: KDD 2009: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 497–506. ACM, New York (2009)Google Scholar
  30. 30.
    Linstone, H.A., Turoff, M., et al.: The Delphi Method: Techniques and Applications, vol. 29. Addison-Wesley, Reading (1975)MATHGoogle Scholar
  31. 31.
    Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: IUI 2010: Proceedings of the 15th International Conference on Intelligent User Interfaces, pp. 31–40. ACM (2010)Google Scholar
  32. 32.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)MATHGoogle Scholar
  33. 33.
    Maccoby, E.E.: Gender as a social category. Dev. Psychol. 24(6), 755 (1988)CrossRefGoogle Scholar
  34. 34.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  35. 35.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  36. 36.
    Myers, S., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Yang, Q., Agarwal, D., Pei, J. (eds.) KDD 2012: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–41. ACM, New York (2012)Google Scholar
  37. 37.
    Oliver, M.B.: Exploring the paradox of the enjoyment of sad films. Hum. Commun. Res. 19(3), 315–342 (1993)CrossRefGoogle Scholar
  38. 38.
    Oliver, M.B.: The respondent gender gap. In: Media Entertainment: The Psychology of its Appeal, pp. 215–234 (2000)Google Scholar
  39. 39.
    Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999)CrossRefGoogle Scholar
  40. 40.
    Pew Research Center for the People, the Press: News audiences increasingly politicized-Online news audience larger, more diverse: Biennial media consumption 2004 (2004). http://www.people-press.org/2004/06/08/news-audiences-increasingly-politicized/. Accessed 20 July 2017
  41. 41.
    Potts, R., Dedmon, A., Halford, J.: Sensation seeking, television viewing motives, and home television viewing patterns. Pers. Individ. Differ. 21(6), 1081–1084 (1996)CrossRefGoogle Scholar
  42. 42.
    Preston, J.M., Clair, S.A.: Selective viewing: cognition, personality and television genres. Br. J. Soc. Psychol. 33(3), 273–288 (1994)CrossRefGoogle Scholar
  43. 43.
    Rokach, L., Maimon, O.: Clustering Methods. Springer, Boston (2005)CrossRefGoogle Scholar
  44. 44.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: WWW 2011: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704. ACM, New York (2011)Google Scholar
  45. 45.
    Schwenk, H.: Continuous space language models. Comput. Speech Lang. 21(3), 492–518 (2007)CrossRefGoogle Scholar
  46. 46.
    Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: hierarchical dirichlet processes. In: Advances in Neural Information Processing Systems, pp. 1385–1392 (2005)Google Scholar
  47. 47.
    Tesch, R.: Qualitative Research: Analysis Types and Software Tools. Psychology Press, Hove (1990)Google Scholar
  48. 48.
    Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: WWW 2013: Proceedings of the 22nd International Conference on World Wide Web, pp. 1445–1456. ACM (2013)Google Scholar
  49. 49.
    Yang, J., Leskovec, J.: Modeling information diffusion in implicit networks. In: ICDM 2010: Proceedings of the 2010 IEEE International Conference on Data Mining, pp. 599–608. IEEE Computer Society, Washington, D.C. (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Qatar Computing Research InstituteHamad Bin Khalifa UniversityDohaQatar

Personalised recommendations