Skip to main content

Enhancing New User Cold-Start Based on Decision Trees Active Learning by Using Past Warm-Users Predictions

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10448))

Included in the following conference series:

  • 1803 Accesses

Abstract

The cold-start is the situation in which the recommender system has no or not enough information about the (new) users/items, i.e. their ratings/feedback; hence, the recommendations are not accurate. Active learning techniques for recommender systems propose to interact with new users by asking them to rate sequentially a few items while the system tries to detect her preferences. This bootstraps recommender systems and alleviate the new user cold-start. Compared to current state of the art, the presented approach takes into account the users’ ratings predictions in addition to the available users’ ratings. The experimentation shows that our approach achieves better performance in terms of precision and limits the number of questions asked to the users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)

    Article  Google Scholar 

  2. Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using decision trees. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 595–604. ACM (2011)

    Google Scholar 

  3. Rubens, N., Kaplan, D., Sugiyama, M.: Active learning in recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 735–767. Springer, Boston (2011). doi:10.1007/978-0-387-85820-3_23

    Chapter  Google Scholar 

  4. Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Comparing prediction models for active learning in recommender systems. In: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB (2015). http://ceur-ws.org

  5. Pilászy, I., Tikk, D.: Recommending new movies: even a few ratings are more valuable than metadata. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 93–100. ACM (2009)

    Google Scholar 

  6. Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: learning new user preferences in recommender systems. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 127–134. ACM (2002)

    Google Scholar 

  7. Elahi, M., Ricci, F., Rubens, N.: Active learning in collaborative filtering recommender systems. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 113–124. Springer, Cham (2014). doi:10.1007/978-3-319-10491-1_12

    Chapter  Google Scholar 

  8. Hofmann, T.: Collaborative filtering via Gaussian probabilistic latent semantic analysis. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 259–266. ACM (2003)

    Google Scholar 

  9. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: SDM, vol. 5, SIAM 1–5 (2005)

    Chapter  Google Scholar 

  10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  11. Peis, E., del Castillo, J.M., Delgado-López, J.: Semantic recommender systems. Analysis of the state of the topic. Hipertext.net 6, 1–5 (2008)

    Google Scholar 

  12. Ziegler, C.N., Lausen, G., Schmidt-Thieme, L.: Taxonomy-driven computation of product recommendations. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pp. 406–415. ACM (2004)

    Google Scholar 

  13. Vozalis, M.G., Margaritis, K.G.: Using SVD and demographic data for the enhancement of generalized collaborative filtering. Inf. Sci. 177(15), 3017–3037 (2007)

    Article  Google Scholar 

  14. Barjasteh, I., Forsati, R., Masrour, F., Esfahanian, A.H., Radha, H.: Cold-start item and user recommendation with decoupled completion and transduction. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 91–98. ACM (2015)

    Google Scholar 

  15. Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender systems: an information theoretic approach. ACM SIGKDD Explor. Newsl. 10(2), 90–100 (2008)

    Article  Google Scholar 

  16. Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 315–324. ACM (2011)

    Google Scholar 

  17. Karimi, R., Nanopoulos, A., Schmidt-Thieme, L.: A supervised active learning framework for recommender systems based on decision trees. User Model. User Adapt. Interact. 25(1), 39–64 (2015)

    Article  Google Scholar 

  18. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the Netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68880-8_32

    Chapter  Google Scholar 

  19. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by FIORA project, and funded by “DGCIS” and “Conseil Regional de l’Île de France”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Pozo , Raja Chiky , Farid Meziane or Elisabeth Métais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pozo, M., Chiky, R., Meziane, F., Métais, E. (2017). Enhancing New User Cold-Start Based on Decision Trees Active Learning by Using Past Warm-Users Predictions. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67074-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67073-7

  • Online ISBN: 978-3-319-67074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics