Skip to main content

Active Learning in Recommender Systems

  • Chapter
  • First Online:
Recommender Systems Handbook

Abstract

Recommender Systems (RSs) are often assumed to present items to users for one reason – to recommend items a user will likely be interested in. Of course RSs do recommend, but this assumption is biased, with no help of the title, towards the “recommending” the system will do. There is another reason for presenting an item to the user: to learn more about his/her preferences, or his/her likes and dislikes. This is where Active Learning (AL) comes in. Augmenting RSs with AL helps the user become more self-aware of their own likes/dislikes while at the same time providing new information to the system that it can analyze for subsequent recommendations. In essence, applying AL to RSs allows for personalization of the recommending process, a concept that makes sense as recommending is inherently geared towards personalization. This is accomplished by letting the system actively influence which items the user is exposed to (e.g. the items displayed to the user during sign-up orduring regular use), and letting the user explore his/her interests freely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, N., Mamitsuka, H.: Query learning strategies using boosting and bagging. In: Proceedings of the Fifteenth International Conference on Machine Learning, vol. 388. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–749 (2005)

    Article  Google Scholar 

  3. Ahn, L.V.: Games with a purpose. Computer 39(6), 92–94 (2006). DOI 10.1109/MC.2006. 196

    Article  Google Scholar 

  4. Bailey, R.A.: Design of Comparative Experiments. Cambridge University Press (2008)

    Google Scholar 

  5. Balcan, M.F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: ICML ’06: Proceedings of the 23rd international conference on Machine learning, pp. 65–72. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1143844.1143853

  6. Boutilier, C., Zemel, R., Marlin, B.: Active collaborative filtering. In: Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 98–106 (2003). URL citeseer.ist.psu.edu/boutilier03active.html

    Google Scholar 

  7. Box, G., Hunter, S.J., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery. Wiley-Interscience (2005)

    Google Scholar 

  8. Breiman, L., Breiman, L.: Bagging predictors. In: Machine Learning, pp. 123–140 (1996)

    Google Scholar 

  9. Bridge, D., Ricci, F.: Supporting product selection with query editing recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 65–72. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1297231.1297243

  10. Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recommender systems. In: IUI ’03: Proceedings of the 8th international conference on Intelligent user interfaces, pp. 12–18. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/604045.604052

  11. Chan, N.: A-optimality for regression designs. Tech. rep., Stanford University, Department of Statistics (1981)

    Google Scholar 

  12. Cohn, D.A.: Neural network exploration using optimal experiment design 6, 679–686 (1994). URL citeseer.ist.psu.edu/article/cohn94neural.html

    Google Scholar 

  13. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. Journal of Artificial Intelligence Research 4, 129–145 (1996)

    MATH  Google Scholar 

  14. Dagan, I., Engelson, S.: Committee-based sampling for training probabilistic classifiers. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 150–157. Citeseer (1995)

    Google Scholar 

  15. Danziger, S., Zeng, J., Wang, Y., Brachmann, R., Lathrop, R.: Choosing where to look next in a mutation sequence space: Active learning of informative p53 cancer rescue mutants. Bioinformatics 23(13), 104–114 (2007)

    Google Scholar 

  16. Dasgupta, S., Lee, W., Long, P.: A theoretical analysis of query selection for collaborative filtering. Machine Learning 51, 283–298 (2003). URL citeseer.ist.psu.edu/ dasgupta02theoretical.html

    Google Scholar 

  17. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fujii, A., Tokunaga, T., Inui, K., Tanaka, H.: Selective sampling for example-based word sense disambiguation. Computational Linguistics 24, 24–4 (1998)

    Google Scholar 

  19. Greiner, R., Grove, A., Roth, D.: Learning cost-sensitive active classifiers. Artificial Intelligence 139, 137–174 (2002)

    Article  MathSciNet  Google Scholar 

  20. Harpale, A.S., Yang, Y.: Personalized active learning for collaborative filtering. In: SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 91–98. ACM, New York, NY, USA (2008). DOI http://doi.acm.org/10.1145/1390334.1390352

  21. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). DOI http://doi.acm.org/10.1145/963770.963772

    Google Scholar 

  22. Hinkelmann, K., Kempthorne, O.: Design and Analysis of Experiments, Advanced Experimental Design. Wiley Series in Probability and Statistics (2005)

    Google Scholar 

  23. Hofmann, T.: Collaborative filtering via gaussian probabilistic latent semantic analysis. In: SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pp. 259–266. ACM, New York, NY, USA (2003). DOI http://doi.acm.org/10.1145/860435.860483

  24. Huang, Z.: Selectively acquiring ratings for product recommendation. In: ICEC ’07: Proceedings of the ninth international conference on Electronic commerce, pp. 379–388. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1282100.1282171

  25. Jin, R., Si, L.: A bayesian approach toward active learning for collaborative filtering. In: AUAI ’04: Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 278–285. AUAI Press, Arlington, Virginia, United States (2004)

    Google Scholar 

  26. John, R.C.S., Draper, N.R.: D-optimality for regression designs: A review. Technometrics 17(1), 15–23 (1975)

    Article  MATH  Google Scholar 

  27. Kapoor, A., Horvitz, E., Basu, S.: Selective supervision: Guiding supervised learning with decision-theoretic active learning. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 877–882 (2007)

    Google Scholar 

  28. Kohrs, A., Merialdo, B.: Improving collaborative filtering for new users by smart object selection. In: Proceedings of International Conference on Media Features (ICMF) (2001)

    Google Scholar 

  29. Leino, J., Räihä, K.J.: Case amazon: ratings and reviews as part of recommendations. In: RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pp. 137– 140. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1297231.1297255

  30. Lomasky, R., Brodley, C., Aernecke, M., Walt, D., Friedl, M.: Active class selection. In: In Proceedings of the European Conference on Machine Learning (ECML). Springer (2007)

    Google Scholar 

  31. McCallum, A., Nigam, K.: Employing em and pool-based active learning for text classification. In: ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 350–358. San Francisco, CA, USA (1998)

    Google Scholar 

  32. Mcginty, L., Smyth, B.: On the Role of Diversity in Conversational Recommender Systems. Case-Based Reasoning Research and Development pp. 276–290 (2003)

    Google Scholar 

  33. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pp. 1097–1101. ACM Press, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1125451.1125659

  34. Nakamura, A., Abe, N.: Collaborative filtering using weighted majority prediction algorithms. In: ICML ’98: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 395–403. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

    Google Scholar 

  35. Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: learning new user preferences in recommender systems. In: IUI ’02: Pro766 Neil Rubens, Dain Kaplan, and Masashi Sugiyama ceedings of the 7th international conference on Intelligent user interfaces, pp. 127–134. ACM Press, New York, NY, USA (2002). DOI http://doi.acm.org/10.1145/502716.502737

  36. Rashid, A.M., Karypis, G., Riedl, J.: Influence in ratings-based recommender systems: An algorithm-independent approach. In: SIAM International Conference on Data Mining, pp. 556–560 (2005)

    Google Scholar 

  37. Ricci, F., Nguyen, Q.N.: Acquiring and revising preferences in a critique-based mobile recommender system. IEEE Intelligent Systems 22(3), 22–29 (2007). DOI http://dx.doi.org/10.1109/MIS.2007.43

    Google Scholar 

  38. Rokach, L., Naamani, L., Shmilovici, A.: Pessimistic cost-sensitive active learning of decision trees for profit maximizing targeting campaigns. Data Mining and Knowledge Discovery 17(2), 283–316 (2008). DOI http://dx.doi.org/10.1007/s10618-008-0105-2

  39. Rokach, L. and Maimon, O. and Arbel, R., Selective voting-getting more for less in sensor fusion, International Journal of Pattern Recognition and Artificial Intelligence 20 (3) (2006), pp. 329–350.

    Google Scholar 

  40. Roy, N., Mccallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: In Proc. 18th International Conf. on Machine Learning, pp. 441–448. Morgan Kaufmann (2001)

    Google Scholar 

  41. Rubens, N., Sugiyama, M.: Influence-based collaborative active learning. In: Proceedings of the 2007 ACM conference on Recommender systems (RecSys 2007). ACM (2007). DOI http://doi.acm.org/10.1145/1297231.1297257

  42. Rubens, N., Tomioka, R., Sugiyama, M.: Output divergence criterion for active learning in collaborative settings. IPSJ Transactions on Mathematical Modeling and Its Applications 2(3), 87–96 (2009)

    Google Scholar 

  43. Saar-Tsechansky, M., Provost, F.: Decision-centric active learning of binary-outcome models. Information Systems Research 18(1), 4–22 (2007). DOI http://dx.doi.org/10.1287/isre.1070.0111

  44. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: SIGIR ’02: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 253–260. ACM, New York, NY, USA (2002). DOI http://doi.acm.org/10.1145/564376.564421

  45. Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines. In: Proc. 17th International Conf. on Machine Learning, pp. 839–846. Morgan Kaufmann, San Francisco, CA (2000). URL citeseer.ist.psu.edu/schohn00less.html

    Google Scholar 

  46. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)

    Google Scholar 

  47. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1069–1078. ACL Press (2008)

    Google Scholar 

  48. Settles, B., Craven, M., Friedland, L.: Active learning with real annotation costs. In: Proceedings of the NIPS Workshop on Cost-Sensitive Learning, pp. 1–10 (2008)

    Google Scholar 

  49. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems (NIPS), vol. 20, pp. 1289–1296. MIT Press (2008)

    Google Scholar 

  50. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Computational Learning Theory, pp. 287–294 (1992). URL citeseer.ist.psu.edu/seung92query.html

    Google Scholar 

  51. Sugiyama, M.: Active learning in approximately linear regression based on conditional expectation of generalization error. Journal of Machine Learning Research 7, 141–166 (2006)

    Google Scholar 

  52. Sugiyama, M., Rubens, N.: A batch ensemble approach to active learning with model selection. Neural Netw. 21(9), 1278–1286 (2008). DOI http://dx.doi.org/10.1016/j.neunet.2008.06.004

  53. Sugiyama, M., Rubens, N., Mueller, K.R.: Dataset Shift in Machine Learning, chap. A conditional expectation approach to model selection and active learning under covariate shift. MIT Press, Cambridge (2008)

    Google Scholar 

  54. Swearingen, K., Sinha, R.: Beyond algorithms: An hci perspective on recommender systems. ACM SIGIR 2001 Workshop on Recommender Systems (2001).

    Google Scholar 

  55. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In: P. Langley (ed.) Proceedings of ICML-00, 17th International Conference on Machine Learning, pp. 999–1006. Morgan Kaufmann Publishers, San Francisco, US, Stanford, US (2000). URL citeseer.ist.psu.edu/article/tong01support.html

    Google Scholar 

  56. Yu, K., Bi, J., Tresp, V.: Active learning via transductive experimental design. In: Proceedings of the 23rd Int. Conference on Machine Learning ICML ’06, pp. 1081–1088. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1143844.1143980

Download references

Acknowledgments

We would like to express our appreciation to Professor Okamoto, Professor Ueno, Professor Tokunaga, Professor Tomioka, Dr. Sheinman, Dr. Vilenius, Sachi Kabasawa and Akane Odake for their help and assistance, and also to MEXT and JST for their financial support; comments received from reviewers and editors were also indespensible to the writing process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Rubens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rubens, N., Kaplan, D., Sugiyama, M. (2011). Active Learning in Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85820-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85820-3_23

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85819-7

  • Online ISBN: 978-0-387-85820-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics