Skip to main content

Passivity-Based Ensemble Control for Cell Cycle Synchronization

  • Chapter
  • First Online:
Emerging Applications of Control and Systems Theory

Abstract

We investigate the problem of synchronizing a population of cellular oscillators in their cell cycle. Restrictions on the observability and controllability of the population imposed by the nature of cell biology give rise to an ensemble control problem specified by finding a broadcast input based on the distribution of the population. We solve the problem by a passivity-based control law, which we derive from the reduced phase model representation of the population and the aim of sending the norm of the first circular moment to one. Furthermore, we present conditions on the phase response curve and circular moments of the population which are sufficient for synchronizing a population of cellular oscillators.

This work is dedicated to Professor Muthukumalli Vidyasagar on his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brockett, R.: Notes on the control of the Liouville equation. In: Lecture Notes in Mathematics, vol. 2048, pp. 101–129. Springer, Berlin (2012)

    Google Scholar 

  2. Clairambault, J., Michel, P., Perthame, B.: A mathematical model of the cell cycle and its circadian control. Math. Model. Biol. Syst., 239–251 (2007). Birkhäuser Boston

    Google Scholar 

  3. Csikasz-Nagy, A.: Computational systems biology of the cell cycle. Brief. Bioinform. 10(4), 424–434 (2009)

    Article  Google Scholar 

  4. Desoer, C.A., Vidyasagar, M.: Feedback systems: input-output properties. Academic Press (1975)

    Google Scholar 

  5. Ermentrout, B.: Simulating, analyzing, and animating dynamical systems. Soc. Ind. Appl. Math. (2002)

    Google Scholar 

  6. von Foerster, H.: Some remarks on changing populations. In: Stohlman, J.F. (ed.) The Kinetics of Cellular Proliferation, pp. 382–407. Grune and Stratton, New York (1959)

    Google Scholar 

  7. Gérard, C., Gonze, D., Goldbeter, A.: Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle. FEBS J. 279(18), 3411–3431 (2012)

    Article  Google Scholar 

  8. Guckenheimer, J.: Isochrons and phaseless sets. J. Math. Biol. 1(3), 259–273 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gyllenberg, M., Webb, G.F.: A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28(6), 671–694 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–74 (2011)

    Article  Google Scholar 

  11. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks, Applied Mathematical Sciences, vol. 126. Springer, New York (1997)

    Book  Google Scholar 

  12. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, vol. 19. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  13. Kuritz, K., Stöhr, D., Pollak, N., Allgöwer, F.: On the relationship between cell cycle analysis with Ergodic principles and age-structured cell population models. J. Theor. Biol. 414(November 2016), 91–102 (2017)

    Google Scholar 

  14. Levskaya, A., Weiner, O.D., Lim, W.A., Voigt, C.A.: Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266), 1–5 (2010)

    Google Scholar 

  15. Malkin, I.G.: Methods of Poincare and Liapunov in Theory of Non-linear Oscillations. Gostexizdat, Moscow (1949)

    Google Scholar 

  16. Malkin, I.G.: Some Problems in Nonlinear Oscillation Theory. Gostexizdat, Moscow (1956)

    MATH  Google Scholar 

  17. McKendrick, A.G.: Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 44, 98–130 (1926)

    Article  Google Scholar 

  18. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Montenbruck, J.M., Bürger, M., Allgöwer, F.: Practical synchronization with diffusive couplings. Automatica 53, 235–243 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morgan, D.O.: The Cell Cycle: Principles of Control. New Science Press, London (2007)

    Google Scholar 

  21. Powell, E.O.: Growth rate and generation time of bacteria, with special reference to continuous culture. J. Gen. Microbiol. 15(3), 492–511 (1956)

    Article  Google Scholar 

  22. Scardovi, L., Arcak, M., Sontag, E.D.: Synchronization of interconnected systems with applications to biochemical networks: an input-output approach. IEEE Trans. Automat. Contr. 55(6), 1367–1379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wilson, D., Moehlis, J.: Optimal chaotic desynchronization for neural populations. SIAM J. Appl. Dyn. Syst. 13(1), 276–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Winfree, A.T.: Patterns of phase compromise in biological cycles. J. Math. Biol. 1(1), 73–93 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeng, S., Waldherr, S., Ebenbauer, C., Allgower, F.: Ensemble observability of linear systems. IEEE Trans. Automat. Contr. 61(6), 1452–1465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhivotovsky, B., Orrenius, S.: Cell cycle and cell death in disease: past, present and future. J. Intern. Med. 268(5), 395–409 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG) for financial support of the project under grant number AL316/14-1 and within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Allgöwer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuritz, K., Halter, W., Allgöwer, F. (2018). Passivity-Based Ensemble Control for Cell Cycle Synchronization. In: Tempo, R., Yurkovich, S., Misra, P. (eds) Emerging Applications of Control and Systems Theory. Lecture Notes in Control and Information Sciences - Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-67068-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67068-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67067-6

  • Online ISBN: 978-3-319-67068-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics